Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Strong association between the 12q24 locus and sweet taste preference in the Japanese population revealed by genome-wide meta-analysis

Abstract

The sweet taste preference of humans is an important adaptation to ensure the acquisition of carbohydrate nutrition; however, overconsumption of sweet foods can potentially lead to diseases such as obesity and diabetes. Although previous studies have suggested that interindividual variation of human sweet taste preference is heritable, genetic loci associated with the trait have yet to be fully elucidated. Here, we genotyped 12,312 Japanese participants using the HumanCore-12+ Custom BeadChip or the HumanCore-24 Custom BeadChip microarrays. The sweet taste preference of the participants was surveyed via an internet-based questionnaire, resulting in a five-point scale of sweet taste preference. The genome-wide meta-analysis of the Japanese participants revealed a strong association between the 12q24 locus and sweet taste preference scale (P = 2.8 × 10−70). The lead variant rs671 is monoallelic in non-East Asian populations and is located in the aldehyde dehydrogenase (ALDH2) gene, encoding an enzyme involved in alcohol metabolism. The association between the minor allele of rs671 and sweet taste preference was attenuated by adjusting for alcohol drinking. The subgroup analysis showed that the effect of rs671 on sweet taste preference was greater in males than in females. In conclusion, we found an association between the 12q24 locus and sweet taste preference in the Japanese population, and showed that the adjustment for drinking habits attenuated the association. This novel genetic association may provide new clues to elucidate mechanisms determining sweet taste preferences.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data generated or analyzed during the current study are included in this published article and its supplementary information file. The summary statistics of the imputed GWAS were deposited on Zenodo (https://doi.org/10.5281/zenodo.3872916). Other data are available from the corresponding author on reasonable request.

References

  1. International Food Information Council Foundation. The 2015 food & health survey: consumer attitudes toward food safety, nutrition & health. Washington, DC; 2015. www.foodinsight.org/2015-food-health-survey-consumer-research.

  2. Story M, Neumark-Sztainer D, French S. Individual and environmental influences on adolescent eating behaviors. J Am Diet Assoc. 2002;102:S40–51.

    PubMed  Google Scholar 

  3. Keskitalo K, Knaapila A, Kallela M, Palotie A, Wessman M, Sammalisto S, et al. Sweet taste preferences are partly genetically determined: identification of a trait locus on chromosome 16. Am J Clin Nutr. 2007;86:55–63.

    CAS  PubMed  Google Scholar 

  4. Keskitalo K, Tuorila H, Spector TD, Cherkas LF, Knaapila A, Silventoinen K, et al. Same genetic components underlie different measures of sweet taste preference. Am J Clin Nutr. 2007;86:1663–9.

    CAS  PubMed  Google Scholar 

  5. Bachmanov AA, Bosak NP, Floriano WB, Inoue M, Li X, Lin C, et al. Genetics of sweet taste preferences. Flavour Fragr J. 2011;26:286–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Pirastu N, Kooyman M, Traglia M, Robino A, Willems SM, Pistis G, et al. A Genome-Wide Association Study in isolated populations reveals new genes associated to common food likings. Rev Endocr Metab Disord. 2016;17:209–19.

    CAS  PubMed  Google Scholar 

  7. Kim U, Wooding S, Riaz N, Jorde LB, Drayna D. Variation in the human TAS1R taste receptor genes. Chem Senses. 2006;31:599–611.

    CAS  PubMed  Google Scholar 

  8. Eny KM, Wolever TM, Corey PN, El-Sohemy A. Genetic variation in TAS1R2 (Ile191Val) is associated with consumption of sugars in overweight and obese individuals in 2 distinct populations. Am J Clin Nutr. 2010;92:1501–10.

    CAS  PubMed  Google Scholar 

  9. Fushan AA, Simons CT, Slack JP, Drayna D. Association between common variation in genes encoding sweet taste signaling components and human sucrose perception. Chem Senses. 2010;35:579–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Eny KM, Wolever TMS, Fontaine-Bisson B, El-Sohemy A. Genetic variant in the glucose transporter type 2 is associated with higher intakes of sugars in two distinct populations. Physiol Genom. 2008;33:355–60.

    CAS  Google Scholar 

  11. Eny KM, Corey PN, El-Sohemy A. Dopamine D2 receptor genotype (C957T) and habitual consumption of sugars in a free-living population of men and women. J Nutr Nutr. 2009;2:235–42.

    CAS  Google Scholar 

  12. Chu AY, Workalemahu T, Paynter NP, Rose LM, Giulianini F, Tanaka T, et al. Novel locus including FGF21 is associated with dietary macronutrient intake. Hum Mol Genet. 2013;22:1895–902.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Schiffman SS, Graham BG, Sattely-Miller EA, Peterson-Dancy M. Elevated and sustained desire for sweet taste in African-Americans: a potential factor in the development of obesity. Nutrition. 2000;16:886–93.

    CAS  PubMed  Google Scholar 

  14. Pepino MY, Mennella JA. Factors contributing to individual differences in sucrose preference. Chem Senses 2005;30(Supplement 1):i319–20.

    PubMed  Google Scholar 

  15. Yamaguchi-Kabata Y, Nakazono K, Takahashi A, Saito S, Hosono N, Kubo M, et al. Japanese population structure, based on SNP genotypes from 7003 individuals compared to other ethnic groups: effects on population-based association studies. Am J Hum Genet. 2008;83:445–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006;38:904–9.

    CAS  PubMed  Google Scholar 

  17. Nakagawa-Senda H, Hachiya T, Shimizu A, Hosono S, Oze I, Watanabe M, et al. A genome-wide association study in the Japanese population identifies the 12q24 locus for habitual coffee consumption: The J-MICC Study. Sci Rep. 2018;8:1493.

    PubMed  PubMed Central  Google Scholar 

  18. Hachiya T, Komaki S, Hasegawa Y, Ohmomo H, Tanno K, Hozawa A, et al. Genome-wide meta-analysis in Japanese populations identifies novel variants at the TMC6-TMC8 and SIX3-SIX2 loci associated with HbA1c. Sci Rep. 2017;7:16147.

    PubMed  PubMed Central  Google Scholar 

  19. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience. 2015;4:7.

    PubMed  PubMed Central  Google Scholar 

  21. The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature. 2015;526:68–74.

    Google Scholar 

  22. Loh P-R, Danecek P, Palamara PF, Fuchsberger C, Reshef Y A, Finucane H K, et al. Reference-based phasing using the Haplotype Reference Consortium panel. Nat Genet. 2016;48:1443–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Das S, Forer L, Schönherr S, Sidore C, Locke AE, Kwong A, et al. Next-generation genotype imputation service and methods. Nat Genet. 2016;48:1284–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 2010;26:2190–1.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet. 2011;88:76–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Matsuo K, Hamajima N, Shinoda M, Hatooka S, Inoue M, Takezaki T, et al. Gene-environment interaction between an aldehyde dehydrogenase-2 (ALDH2) polymorphism and alcohol consumption for the risk of esophageal cancer. Carcinogenesis. 2001;22:913–6.

    CAS  PubMed  Google Scholar 

  27. Hurley TD, Edenberg HJ, Bosron WF. Expression and kinetic characterization of variants of human beta 1 beta 1 alcohol dehydrogenase containing substitutions at amino acid 47. J Biol Chem. 1990;265:16366–72.

    CAS  PubMed  Google Scholar 

  28. Zakhari S. Overview: how is alcohol metabolized by the body? Alcohol Res Health. 2006;29:245–54.

    PubMed  PubMed Central  Google Scholar 

  29. Matsuo K. Alcohol dehydrogenase 2 His47Arg polymorphism influences drinking habit independently of aldehyde dehydrogenase 2 Glu487Lys polymorphism: analysis of 2,299 Japanese subjects. Cancer Epidemiol Biomark Prev. 2006;15:1009–13.

    CAS  Google Scholar 

  30. Tsuchihashi-Makaya M, Serizawa M, Yanai K, Katsuya T, Takeuchi F, Fujioka A, et al. Gene-environmental interaction regarding alcohol-metabolizing enzymes in the Japanese general population. Hypertens Res 2009;32:207–13.

    CAS  PubMed  Google Scholar 

  31. Shibuya A, Yoshida A. Frequency of the atypical aldehyde dehydrogenase-2 gene (ALDH2(2)) in Japanese and Caucasians. Am J Hum Genet. 1988;43:741–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Goedde HW, Agarwal DP, Fritze G, Meier-Tackmann D, Singh S, Beckmann G, et al. Distribution of ADH2 and ALDH2 genotypes in different populations. Hum Genet. 1992;88:344–6.

    CAS  PubMed  Google Scholar 

  33. Li H, Borinskaya S, Yoshimura K, Kal’ina N, Marusin A, Stepanov VA, et al. Refined geographic distribution of the oriental ALDH2*504Lys (nee 487Lys) variant. Ann Hum Genet. 2009;73(Pt 3):335–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Macgregor S, Lind PA, Bucholz KK, Hansell NK, Madden PAF, Richter MM, et al. Associations of ADH and ALDH2 gene variation with self report alcohol reactions, consumption and dependence: an integrated analysis. Hum Mol Genet. 2009;18:580–93.

    CAS  PubMed  Google Scholar 

  35. Takeuchi F, Isono M, Nabika T, Katsuya T, Sugiyama T, Yamaguchi S, et al. Confirmation of ALDH2 as a major locus of drinking behavior and of its variants regulating multiple metabolic phenotypes in a Japanese population. Circ J. 2011;75:911–8.

    CAS  PubMed  Google Scholar 

  36. Matoba N, Akiyama M, Ishigaki K, Kanai M, Takahashi A, Momozawa Y, et al. GWAS of 165,084 Japanese individuals identified nine loci associated with dietary habits. Nat Hum Behav. 2020;4:308–16.

    PubMed  Google Scholar 

  37. Bosron WF, Li TK. Genetic polymorphism of human liver alcohol and aldehyde dehydrogenases, and their relationship to alcohol metabolism and alcoholism. Hepatology. 1986;6:502–10.

    CAS  PubMed  Google Scholar 

  38. Yoshida A, Wang G, Davé V. Determination of genotypes of human aldehyde dehydrogenase ALDH2 locus. Am J Hum Genet. 1983;35:1107–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Yoshida A, Huang IY, Ikawa M. Molecular abnormality of an inactive aldehyde dehydrogenase variant commonly found in Orientals. Proc Natl Acad Sci USA. 1984;81:258–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Enomoto N, Takase S, Yasuhara M, Takada A. Acetaldehyde metabolism in different aldehyde dehydrogenase-2 genotypes. Alcohol Clin Exp Res. 1991;15:141–4.

    CAS  PubMed  Google Scholar 

  41. Takeshita T, Morimoto K, Mao X, Hashimoto T, Furuyama J. Characterization of the three genotypes of low Km aldehyde dehydrogenase in a Japanese population. Hum Genet. 1994;94:217–23.

    CAS  PubMed  Google Scholar 

  42. Lewis SJ, Smith GD. Alcohol, ALDH2, and esophageal cancer: a meta-analysis which illustrates the potentials and limitations of a Mendelian randomization approach. Cancer Epidemiol Biomark Prev. 2005;14:1967–71.

    CAS  Google Scholar 

  43. Hendershot CS, Collins SE, George WH, Wall TL, McCarthy DM, Liang T, et al. Associations of ALDH2 and ADH1B genotypes with alcohol-related phenotypes in Asian young adults. Alcohol Clin Exp Res. 2009;33:839–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Sakiyama M, Matsuo H, Nakaoka H, Yamamoto K, Nakayama A, Nakamura T, et al. Identification of rs671, a common variant of ALDH2, as a gout susceptibility locus. Sci Rep. 2016;6:25360.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Kampov-Polevoy AB. Association between preference for sweets and excessive alcohol intake: a review of animal and human studies. Alcohol Alcohol. 1999;34:386–95.

    CAS  PubMed  Google Scholar 

  46. Thibodeau M, Pickering GJ. The role of taste in alcohol preference, consumption and risk behavior. Crit Rev Food Sci Nutr. 2017:1–17. https://doi.org/10.1080/10408398.2017.1387759.

  47. Bogucka-Bonikowska A, Scinska A, Koros E, Polanowska E, Habrat B, Woronowicz B, et al. Taste responses in alcohol-dependent men. Alcohol Alcohol. 2001;36:516–9.

    CAS  PubMed  Google Scholar 

  48. Tremblay KA, Bona JM, Kranzler HR. Effects of a diagnosis or family history of alcoholism on the taste intensity and hedonic value of sucrose. Am J Addict. 2009;18:494–9.

    PubMed  PubMed Central  Google Scholar 

  49. Conner MT, Booth DA. Preferred sweetness of a lime drink and preference for sweet over non-sweet foods, related to sex and reported age and body weight. Appetite. 1988;10:25–35.

    CAS  PubMed  Google Scholar 

  50. Feigin MB, Sclafani A, Sunday SR. Species differences in polysaccharide and sugar taste preferences. Neurosci Biobehav Rev. 1987;11:231–40.

    CAS  PubMed  Google Scholar 

  51. Lanfer A, Knof K, Barba G, Veidebaum T, Papoutsou S, de Henauw S, et al. Taste preferences in association with dietary habits and weight status in European children: results from the IDEFICS study. Int J Obes. 2012;36:27–34.

    CAS  Google Scholar 

  52. Lange LA, Kampov-Polevoy AB, Garbutt JC. Sweet liking and high novelty seeking: independent phenotypes associated with alcohol-related problems. Alcohol Alcohol. 2010;45:431–6.

    PubMed  Google Scholar 

Download references

Funding

This research was supported by Grants-in-Aid (Grant-in-Aid for Challenging Exploratory Research, 16K14920 to HK) from Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisanori Kato.

Ethics declarations

Conflict of interest

KK and SN are employees of Genequest Inc.; ST and KS are Board Members of Genequest Inc.; TH is a Board Member of Genome Analytics Japan Inc., and is an adviser of Genequest Inc. HJ and HK declare no potential conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawafune, K., Hachiya, T., Nogawa, S. et al. Strong association between the 12q24 locus and sweet taste preference in the Japanese population revealed by genome-wide meta-analysis. J Hum Genet 65, 939–947 (2020). https://doi.org/10.1038/s10038-020-0787-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s10038-020-0787-x

This article is cited by

Search

Quick links