Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The era of immunogenomics/immunopharmacogenomics

Abstract

Although germline alterations and somatic mutations in disease cells have been extensively analyzed, molecular changes in immune cells associated with disease conditions have not been characterized in depth. It is clear that our immune system has a critical role in various biological and pathological conditions, such as infectious diseases, autoimmune diseases, drug-induced skin and liver toxicity, food allergy, and rejection of transplanted organs. The recent development of cancer immunotherapies, particularly drugs modulating the immune checkpoint molecules, has clearly demonstrated the importance of host immune cells in cancer treatments. However, the molecular mechanisms by which these new therapies kill tumor cells are still not fully understood. In this regard, we have begun to explore the role of newly developed tools such as next-generation sequencing in the genetic characterization of both cancer cells and host immune cells, a field that is called immunogenomics/ immunopharmacogenomics. This new field has enormous potential to help us better understand changes in our immune system during the course of various disease conditions. Here we report the potential of deep sequencing of T-cell and B-cell receptors in capturing the molecular contribution of the immune system, which we believe plays critical roles in the pathogenesis of various human diseases.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Rabbani B, Tekin M, Mahdieh N. The promise of whole-exome sequencing in medical genetics. J Human Genet. 2014;59:5–15.

    Article  CAS  Google Scholar 

  2. 2.

    Cancer Genome Atlas Research N, Weinstein JN, Collisson EA, et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet. 2013;45:1113–20.

    Article  CAS  Google Scholar 

  3. 3.

    International Cancer Genome C, Hudson TJ, Anderson W, et al. International network of cancer genome projects. Nature. 2010;464:993–8.

    Article  CAS  Google Scholar 

  4. 4.

    Swann JB, Smyth MJ. Immune surveillance of tumors. J Clin Investig. 2007;117:1137–46.

    Article  PubMed  CAS  Google Scholar 

  5. 5.

    Mullard A. New checkpoint inhibitors ride the immunotherapy tsunami. Nat Rev Drug Discov. 2013;12:489–92.

    Article  PubMed  CAS  Google Scholar 

  6. 6.

    Morris GP, Allen PM. How the TCR balances sensitivity and specificity for the recognition of self and pathogens. Nat Immunol. 2012;13:121–8.

    Article  PubMed  CAS  Google Scholar 

  7. 7.

    Venturi V, Price DA, Douek DC, Davenport MP. The molecular basis for public T-cell responses? Nat Rev Immunol. 2008;8:231–8.

    Article  PubMed  CAS  Google Scholar 

  8. 8.

    Kim S, Davis M, Sinn E, Patten P, Hood L. Antibody diversity: somatic hypermutation of rearranged VH genes. Cell. 1981;27:573–81.

    Article  PubMed  CAS  Google Scholar 

  9. 9.

    Langerak AW, van Den Beemd R, Wolvers-Tettero IL, et al. Molecular and flow cytometric analysis of the Vbeta repertoire for clonality assessment in mature TCR alphabeta T-cell proliferations. Blood . 2001;98:165–73.

    Article  PubMed  CAS  Google Scholar 

  10. 10.

    Gorski J, Yassai M, Zhu X, et al. Circulating T cell repertoire complexity in normal individuals and bone marrow recipients analyzed by CDR3 size spectratyping. Correlation with immune status. J Immunol. 1994;152:5109–19.

    PubMed  CAS  Google Scholar 

  11. 11.

    Memon SA, Sportes C, Flomerfelt FA, Gress RE, Hakim FT. Quantitative analysis of T cell receptor diversity in clinical samples of human peripheral blood. J Immunol Methods. 2012;375:84–92.

    Article  PubMed  CAS  Google Scholar 

  12. 12.

    Bashford-Rogers RJ, Palser AL, Huntly BJ, et al. Network properties derived from deep sequencing of human B-cell receptor repertoires delineate B-cell populations. Genome Res. 2013;23:1874–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. 13.

    Freeman JD, Warren RL, Webb JR, Nelson BH, Holt RA. Profiling the T-cell receptor beta-chain repertoire by massively parallel sequencing. Genome Res. 2009;19:1817–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. 14.

    Boyd SD, Gaeta BA, Jackson KJ, et al. Individual variation in the germline Ig gene repertoire inferred from variable region gene rearrangements. J Immunol. 2010;184:6986–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. 15.

    Lange V, Bohme I, Hofmann J, et al. Cost-efficient high-throughput HLA typing by MiSeq amplicon sequencing. BMC Genom. 2014;15:63.

    Article  Google Scholar 

  16. 16.

    Warren RL, Freeman JD, Zeng T, et al. Exhaustive T-cell repertoire sequencing of human peripheral blood samples reveals signatures of antigen selection and a directly measured repertoire size of at least 1 million clonotypes. Genome Res. 2011;21:790–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. 17.

    Jang M, Yew PY, Hasegawa K, et al. Characterization of T cell repertoire of blood, tumor, and ascites in ovarian cancer patients using next generation sequencing. Oncoimmunology. 2015;4:e1030561.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. 18.

    Liu X, Venkataraman G, Lin J, et al. Highly clonal regulatory T-cell population in follicular lymphoma - inverse correlation with the diversity of CD8(+) T cells. Oncoimmunology. 2015;4:e1002728.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. 19.

    Kato T, Iwasaki T, Uemura M, et al. Characterization of the cryoablation-induced immune response in kidney cancer patients. Oncoimmunology . 2017;6:e1326441.

    Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Choudhury NJ, Kiyotani K, Yap KL, et al. Low T-cell receptor diversity, high somatic-mutation burden, and high neoantigen load as predictors of clinical outcome in muscle-invasive bladder cancer. Eur Urol Focus. 2016;2:445–52.

    Article  PubMed  Google Scholar 

  21. 21.

    Ikeda Y, Kiyotani K, Yew PY, et al. Clinical significance of T cell clonality and expression levels of immune-related genes in endometrial cancer. Oncol Rep. 2017;37:2603–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. 22.

    Inoue H, Park JH, Kiyotani K, et al. Intratumoral expression levels of PD-L1, GZMA, and HLA-A along with oligoclonal T cell expansion associate with response to nivolumab in metastatic melanoma. Oncoimmunology. 2016;5:e1204507.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. 23.

    Kiyotani K, Park JH, Inoue H, et al. Integrated analysis of somatic mutations and immune microenvironment in malignant pleural mesothelioma. Oncoimmunology. 2017;6:e1278330.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. 24.

    Mai T, Takano A, Suzuki H, et al. Quantitative analysis and clonal characterization of T-cell receptor beta repertoires in patients with advanced non-small cell lung cancer treated with cancer vaccine. Oncol Lett. 2017;14:283–92.

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Park J-H, Jang M, Tarhan YE, et al. Clonal expansion of antitumor T cells in breast cancer correlates with response to neoadjuvant chemotherapy. Int J Oncol. 2016;49:471–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. 26.

    Saloura V, Fatima A, Zewde M, et al. Characterization of the T-cell receptor repertoire and immune microenvironment in patients with locoregionally advanced squamous cell carcinoma of the head and neck. Clin Cancer Res. 2017;23:4897–907.

    Article  PubMed  CAS  Google Scholar 

  27. 27.

    Yew PY, Alachkar H, Yamaguchi R, et al. Quantitative characterization of T-cell repertoire in allogeneic hematopoietic stem cell transplant recipients. Bone Marrow Transplant. 2015;50:1227–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. 28.

    Kiyotani K, Mai TH, Yamaguchi R, et al. Characterization of the B-cell receptor repertoires in peanut allergic subjects undergoing oral immunotherapy. J Human Genet. 2018;63:239–48.

    Article  CAS  Google Scholar 

  29. 29.

    Drake CG, Lipson EJ, Brahmer JR. Breathing new life into immunotherapy: review of melanoma, lung and kidney cancer. Nat Rev Clin Oncol. 2014;11:24–37.

    Article  PubMed  CAS  Google Scholar 

  30. 30.

    Drake CG, Jaffee E, Pardoll DM. Mechanisms of immune evasion by tumors. Adv Immunol. 2006;90:51–81.

    Article  PubMed  CAS  Google Scholar 

  31. 31.

    Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. 32.

    Schadendorf D, Hodi FS, Robert C, et al. Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J Clin Oncol. 2015;33:1889–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. 33.

    Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015;348:69–74.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. 34.

    Rizvi NA, Hellmann MD, Snyder A, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348:124–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. 35.

    Le DT, Durham JN, Smith KN, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017;357:409–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. 36.

    Leisegang M, Engels B, Schreiber K, et al. Eradication of large solid tumors by gene therapy with a T-cell receptor targeting a single cancer-specific point mutation. Clin Cancer Res. 2016;22:2734–43.

    Article  PubMed  CAS  Google Scholar 

  37. 37.

    Maoz A, Rennert G, Gruber SB. T-cell transfer therapy targeting mutant KRAS. New Engl J Med. 2017;376:e11.

    Article  PubMed  Google Scholar 

  38. 38.

    Tran E, Turcotte S, Gros A, et al. Cancer immunotherapy based on mutation-specific CD4+T cells in a patient with epithelial cancer. Science. 2014;344:641–5.

    Article  PubMed  CAS  Google Scholar 

  39. 39.

    Kato T, Matsuda T, Ikeda Y, et al. Effective screening of T cells recognizing neoantigens and construction of T-cell receptor-engineered T cells. Oncotarget. 2018;9:11009–19.

    Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Tumeh PC, Harview CL, Yearley JH, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515:568–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. 41.

    Zhang L, Conejo-Garcia JR, Katsaros D, et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med. 2003;348:203–13.

    Article  PubMed  CAS  Google Scholar 

  42. 42.

    Sato E, Olson SH, Ahn J, et al. Intraepithelial CD8+tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci USA. 2005;102:18538–43.

    Article  PubMed  CAS  Google Scholar 

  43. 43.

    Scherpereel A, Grigoriu BD, Noppen M, et al. Defect in recruiting effector memory CD8+T-cells in malignant pleural effusions compared to normal pleural fluid. BMC Cancer. 2013;13:324.

    Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Chang SG, Lee SJ, Huh JS, Lee JH. Changes in mucosal immune cells of bladder tumor patient after BCG intravesical immunotherapy. Oncol Rep. 2001;8:257–61.

    PubMed  CAS  Google Scholar 

  45. 45.

    Shang B, Liu Y, Jiang SJ, Liu Y. Prognostic value of tumor-infiltrating FoxP3+regulatory T cells in cancers: a systematic review and meta-analysis. Sci Rep. 2015;5:15179.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. 46.

    Carreras J, Lopez-Guillermo A, Fox BC, et al. High numbers of tumor-infiltrating FOXP3-positive regulatory T cells are associated with improved overall survival in follicular lymphoma. Blood . 2006;108:2957–64.

    Article  PubMed  CAS  Google Scholar 

  47. 47.

    Farinha P, Al-Tourah A, Gill K, Klasa R, Connors JM, Gascoyne RD. The architectural pattern of FOXP3-positive T cells in follicular lymphoma is an independent predictor of survival and histologic transformation. Blood . 2010;115:289–95.

    Article  PubMed  CAS  Google Scholar 

  48. 48.

    Thakur A, Littrup P, Paul EN, Adam B, Heilbrun LK, Lum LG. Induction of specific cellular and humoral responses against renal cell carcinoma after combination therapy with cryoablation and granulocyte-macrophage colony stimulating factor: a pilot study. J Immunother. 2011;34:457–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. 49.

    Si T, Guo Z, Hao X. Immunologic response to primary cryoablation of high-risk prostate cancer. Cryobiology. 2008;57:66–71.

    Article  PubMed  CAS  Google Scholar 

  50. 50.

    Gazzaniga S, Bravo A, Goldszmid SR, et al. Inflammatory changes after cryosurgery-induced necrosis in human melanoma xenografted in nude mice. J Invest Dermatol. 2001;116:664–71.

    Article  PubMed  CAS  Google Scholar 

  51. 51.

    Zha B, Huang X, Lin J, Liu J, Hou Y, Wu G. Distribution of lymphocyte subpopulations in thyroid glands of human autoimmune thyroid disease. J Clin Lab Anal. 2014;28:249–54.

    Article  PubMed  CAS  Google Scholar 

  52. 52.

    Winchester R, Wiesendanger M, Zhang HZ, et al. Immunologic characteristics of intrarenal T cells: trafficking of expanded CD8+T cell beta-chain clonotypes in progressive lupus nephritis. Arthritis Rheum. 2012;64:1589–600.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. 53.

    Murata H, Matsumura R, Koyama A, et al. T cell receptor repertoire of T cells in the kidneys of patients with lupus nephritis. Arthritis Rheum. 2002;46:2141–7.

    Article  PubMed  CAS  Google Scholar 

  54. 54.

    Alunno A, Bistoni O, Bartoloni E, et al. IL-17-producing CD4-CD8- T cells are expanded in the peripheral blood, infiltrate salivary glands and are resistant to corticosteroids in patients with primary Sjogren’s syndrome. Ann Rheum Dis. 2013;72:286–92.

    Article  PubMed  CAS  Google Scholar 

  55. 55.

    Maecker HT, Lindstrom TM, Robinson WH, et al. New tools for classification and monitoring of autoimmune diseases. Nat Rev Rheumatol. 2012;8:317–28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. 56.

    Baumgart DC, Sandborn WJ. Crohn’s disease. Lancet. 2012;380:1590–605.

    Article  PubMed  Google Scholar 

  57. 57.

    Chapman CG, Yamaguchi R, Tamura K, et al. Characterization of T-cell receptor repertoire in inflamed tissues of patients with Crohn’s disease through deep sequencing. Inflamm bowel Dis. 2016;22:1275–85.

    Article  PubMed  Google Scholar 

  58. 58.

    Lee AJ, Thalayasingam M, Lee BW. Food allergy in Asia: how does it compare? Asia Pac Allergy. 2013;3:3–14.

    Article  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Boyce JA, Assa’ad A, Burks AW, et al. Guidelines for the diagnosis and management of food allergy in the United States: report of the NIAID-sponsored expert panel. J Allergy Clin Immunol. 2010;126:S1–58.

    Article  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Ho MH, Lee SL, Wong WH, Ip P, Lau YL. Prevalence of self-reported food allergy in Hong Kong children and teens--a population survey. Asian Pac J Allergy Immunol. 2012;30:275–84.

    PubMed  Google Scholar 

  61. 61.

    Lee AJ, Gerez I, Shek LP, Lee BW. Shellfish allergy—an Asia-Pacific perspective. Asian Pac J Allergy Immunol. 2012;30:3–10.

    PubMed  Google Scholar 

  62. 62.

    Palomares O. The role of regulatory T cells in IgE-mediated food allergy. J Investig Allergol Clin Immunol. 2013;23:371–82.

    PubMed  CAS  Google Scholar 

  63. 63.

    Palomares O, Yaman G, Azkur AK, Akkoc T, Akdis M, Akdis CA. Role of Treg in immune regulation of allergic diseases. Eur J Immunol. 2010;40:1232–40.

    Article  PubMed  CAS  Google Scholar 

  64. 64.

    Akdis M, Burgler S, Crameri R, et al. Interleukins, from 1 to 37, and interferon-gamma: receptors, functions, and roles in diseases. J Allergy Clin Immunol. 2011;127:701–21.

    Article  PubMed  CAS  Google Scholar 

  65. 65.

    Akdis M, Palomares O, van de Veen W, van Splunter M, Akdis CA. TH17 and TH22 cells: a confusion of antimicrobial response with tissue inflammation versus protection. J Allergy Clin Immunol. 2012;129:1438–49.

    Article  PubMed  CAS  Google Scholar 

  66. 66.

    Mattsson J, Ringden O, Storb R. Graft failure after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2008;14:165–70.

    Article  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Ferrara JL, Levine JE, Reddy P, Holler E. Graft-versus-host disease. Lancet. 2009;373:1550–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. 68.

    Wood KJ, Goto R. Mechanisms of rejection: current perspectives. Transplantation . 2012;93:1–10.

    Article  PubMed  Google Scholar 

  69. 69.

    Petersdorf EW, Longton GM, Anasetti C, et al. Association of HLA-C disparity with graft failure after marrow transplantation from unrelated donors. Blood . 1997;89:1818–23.

    PubMed  CAS  Google Scholar 

  70. 70.

    Fleischhauer K, Kernan NA, O’Reilly RJ, Dupont B, Yang SY. Bone marrow-allograft rejection by T lymphocytes recognizing a single amino acid difference in HLA-B44. N Engl J Med. 1990;323:1818–22.

    Article  PubMed  CAS  Google Scholar 

  71. 71.

    Anasetti C, Amos D, Beatty PG, et al. Effect of HLA compatibility on engraftment of bone marrow transplants in patients with leukemia or lymphoma. N Engl J Med. 1989;320:197–204.

    Article  PubMed  CAS  Google Scholar 

  72. 72.

    Shlomchik WD. Graft-versus-host disease. Nat Rev Immunol. 2007;7:340–52.

    Article  PubMed  CAS  Google Scholar 

  73. 73.

    Flowers ME, Inamoto Y, Carpenter PA, et al. Comparative analysis of risk factors for acute graft-versus-host disease and for chronic graft-versus-host disease according to National Institutes of Health consensus criteria. Blood. 2011;117:3214–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. 74.

    Schmaltz C, Alpdogan O, Muriglan SJ, et al. Donor T cell-derived TNF is required for graft-versus-host disease and graft-versus-tumor activity after bone marrow transplantation. Blood. 2003;101:2440–5.

    Article  PubMed  CAS  Google Scholar 

  75. 75.

    Kataoka Y, Iwasaki T, Kuroiwa T, et al. The role of donor T cells for target organ injuries in acute and chronic graft-versus-host disease. Immunology. 2001;103:310–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. 76.

    Hau P, Jachimczak P, Schlingensiepen R, et al. Inhibition of TGF-beta2 with AP 12009 in recurrent malignant gliomas: from preclinical to phase I/II studies. Oligonucleotides. 2007;17:201–12.

    Article  PubMed  CAS  Google Scholar 

  77. 77.

    Dong S, Maiella S, Xhaard A, et al. Multiparameter single-cell profiling of human CD4+FOXP3+regulatory T-cell populations in homeostatic conditions and during graft-versus-host disease. Blood. 2013;122:1802–12.

    Article  PubMed  CAS  Google Scholar 

  78. 78.

    Olugbile S, Kiyotani K, Park JH, et al. PS01.05: early and persistent oligoclonal T cell expansion correlates with durable response to anti-PD1 therapy in NSCLC: topic: medical oncology. J Thorac Oncol. 2016;11:S272.

    Article  PubMed  Google Scholar 

  79. 79.

    Alamyar E, Duroux P, Lefranc MP, Giudicelli V. IMGT((R)) tools for the nucleotide analysis of immunoglobulin (IG) and T cell receptor (TR) V-(D)-J repertoires, polymorphisms, and IG mutations: IMGT/V-QUEST and IMGT/HighV-QUEST for NGS. Methods Mol Biol. 2012;882:569–604.

    Article  PubMed  CAS  Google Scholar 

  80. 80.

    Bolotin DA, Poslavsky S, Mitrophanov I, et al. MiXCR: software for comprehensive adaptive immunity profiling. Nat Methods. 2015;12:380–1.

    Article  PubMed  CAS  Google Scholar 

  81. 81.

    Thomas N, Heather J, Ndifon W, Shawe-Taylor J, Chain B. Decombinator: a tool for fast, efficient gene assignment in T-cell receptor sequences using a finite state machine. Bioinformatics. 2013;29:542–50.

    Article  PubMed  CAS  Google Scholar 

  82. 82.

    Ye J, Ma N, Madden TL, Ostell JM. IgBLAST: an immunoglobulin variable domain sequence analysis tool. Nucleic Acids Res. 2013;41:W34–40.

    Article  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Fang H, Yamaguchi R, Liu X, et al. Quantitative T cell repertoire analysis by deep cDNA sequencing of T cell receptor alpha and beta chains using next-generation sequencing (NGS). Oncoimmunology. 2014;3:e968467.

    Article  PubMed  Google Scholar 

  84. 84.

    Davis MM, Bjorkman PJ. T-cell antigen receptor genes and T-cell recognition. Nature. 1988;334:395–402.

    Article  PubMed  CAS  Google Scholar 

  85. 85.

    Dash P, McClaren JL, Oguin TH 3rd, et al. Paired analysis of TCR alpha and TCRbeta chains at the single-cell level in mice. J Clin Investig. 2011;121:288–95.

    Article  PubMed  CAS  Google Scholar 

  86. 86.

    Kim SM, Bhonsle L, Besgen P, et al. Analysis of the paired TCR alpha- and beta-chains of single human T cells. PLoS ONE. 2012;7:e37338.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. 87.

    Seitz S, Schneider CK, Malotka J, et al. Reconstitution of paired T cell receptor alpha- and beta-chains from microdissected single cells of human inflammatory tissues. Proc Natl Acad Sci USA. 2006;103:12057–62.

    Article  PubMed  CAS  Google Scholar 

  88. 88.

    DeKosky BJ, Ippolito GC, Deschner RP, et al. High-throughput sequencing of the paired human immunoglobulin heavy and light chain repertoire. Nat Biotechnol. 2013;31:166–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. 89.

    Lee ES, Thomas PG, Mold JE, Yates AJ. Identifying T cell receptors from high-throughput sequencing: dealing with promiscuity in TCR alpha and TCRbeta pairing. PLoS Comput Biol. 2017;13:e1005313.

    Article  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Howie B, Sherwood AM, Berkebile AD, et al. High-throughput pairing of T cell receptor alpha and beta sequences. Sci Transl Med. 2015;7:301ra131.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yusuke Nakamura.

Ethics declarations

Conflict of interest

Yusuke Nakamura is a stockholder and an adviser of OncoTherapy Science Inc and an adviser of Cancer Precision Medicine Inc. Jae-Hyun Park, Poh Yin Yew, and Makiko Harada are employees of Cancer Precision Medicine Inc.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zewde, M., Kiyotani, K., Park, JH. et al. The era of immunogenomics/immunopharmacogenomics. J Hum Genet 63, 865–875 (2018). https://doi.org/10.1038/s10038-018-0468-1

Download citation

Further reading

Search

Quick links