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Abstract
Although germline alterations and somatic mutations in disease cells have been extensively analyzed, molecular changes in
immune cells associated with disease conditions have not been characterized in depth. It is clear that our immune system has
a critical role in various biological and pathological conditions, such as infectious diseases, autoimmune diseases, drug-
induced skin and liver toxicity, food allergy, and rejection of transplanted organs. The recent development of cancer
immunotherapies, particularly drugs modulating the immune checkpoint molecules, has clearly demonstrated the importance
of host immune cells in cancer treatments. However, the molecular mechanisms by which these new therapies kill tumor
cells are still not fully understood. In this regard, we have begun to explore the role of newly developed tools such as
next-generation sequencing in the genetic characterization of both cancer cells and host immune cells, a field that is called
immunogenomics/ immunopharmacogenomics. This new field has enormous potential to help us better understand changes
in our immune system during the course of various disease conditions. Here we report the potential of deep sequencing
of T-cell and B-cell receptors in capturing the molecular contribution of the immune system, which we believe plays critical
roles in the pathogenesis of various human diseases.

Introduction

The recent development of high-throughput DNA sequen-
cing technologies has driven rapid progress in genetics and
genomics research, enabling us to address a multitude of
biological questions. In the field of population and medical
genetics, including cancer genomics, sequencing of the
whole-genome or whole-exome as well as genome-wide
association studies using single-nucleotide polymorphisms
(SNPs) has allowed us to characterize disease-associated
genetic loci and variants [1]. In the past decade, the
International Cancer Genome Consortium (ICGC) as
well as The Cancer Genome Atlas (TCGA) have
characterized the genetic drivers of disease by performing

comprehensive genomic characterization of various types of
human cancer [2, 3].

Although germline and somatic mutations have been
extensively analyzed, changes in the molecular makeup of
immune cells associated with certain disease conditions
have not been characterized in depth. The immune system
plays a critical role in various biological and pathological
conditions, such as infectious disease, autoimmune disease,
drug-induced skin and liver toxicity, food allergy, and
rejection after organ transplantation. In addition, recent
developments in cancer immunotherapy have highlighted
the importance of host immune cells in the fight against
cancer. For example, through a process known as immune
surveillance, the immune system eliminates nascent tumor
cells from our body [4], and serves as a primary defense
against cancer. The recent success of antibodies
targeting immune checkpoint molecules such as cytotoxic
T lymphocyte antigen 4 (CTLA-4), programmed cell
death protein 1 (PD-1) and its ligand PD-L1, have
clearly demonstrated that our immune system has the
ability to eradicate cancer cells [5]. However, the
molecular mechanisms by which those immune checkpoint-
blocking antibodies kill tumor cells are still not fully
characterized.
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The adaptive immune system cells, the T and
B lymphocytes, are selectively activated by recognition of
an antigen through their trans-membrane receptors. These
receptors are known as the T-cell receptors (TCRs) and
B-cell receptors (BCRs), respectively, and are important for
inducing various immunological reactions as described
above. TCRs and BCRs are also known as the ‘signatures’
of T and B lymphocytes. Considering the extremely
high complexity of immune responses in our body, a
comprehensive approach to fully characterize changes in
TCR and BCR repertoires is urgently needed.

During lymphocyte differentiation, genes encoding
TCRs and BCRs, which include variable (V), diversity (D),
and joining (J) exon segments, undergo a complex
rearrangement process to generate functional receptors.
Extremely diverse TCR and BCR repertories are created by
combinatorial diversity generated by the presence of a large
number of distinct V, D, and J gene segments, and also by
junctional diversity created by the template-independent
insertion and deletion of nucleotides at the V–D, D–J, or
V–J rearranged junctions during V–D–J recombination.
This rearrangement process generates the highly variable
complementary determining region 3 (CDR3), which
determines specificity and affinity for antigen recognition
[6]. Theoretically, a repertoire of ~1018 different TCRs,
heterodimers of alpha and beta-chains, can be generated in a
human [7]. In addition to TCR diversity, an even more
diverse BCR repertoire is expected due to further somatic
hypermutation [8].

To characterize the complex structure of our immune
system and investigate the underlying mechanisms related
to various disease conditions, two strategies have previously
been applied. The first strategy aimed to detect the presence
of different TCR families by comparing the usage of
different TCR variable (V) sequences [9]. A second strat-
egy, called CDR3 size spectratyping, was used to determine
the clonality of the repertoire using fluorescent primers to
measure length variation of the CDR3 region within each
TCR V family [10, 11]. Although these approaches can
provide a certain level of information, such as the
proportion of each V(D)J combination, they do not provide
detailed information about the CDR3 region sequences.
In addition, these methods are not applicable if unidentified
exons for V and/or J segments are present in certain
individuals or populations.

To overcome these technical limitations, a systematic,
accurate and unbiased analysis of TCR and BCR transcripts
is needed. Although the earlier generation of high-
throughput DNA sequencers had limitations due to their
short read-lengths (50–100 bp long) or low sequencing
output, the development of longer read-lengths has enabled
us to analyze millions of TCRs and BCRs in a single
experiment [12–15].

In this review article, we describe the current status and
applications of TCR and BCR repertoire deep sequencing,
and discuss the future potential of immunogenomics/
immunopharmacogenomics studies (Fig. 1).

TCR and BCR sequencing with next-generation
sequencers (NGS)

For TCR and BCR cDNA sequencing by NGS, we have
applied a method known as 5′ rapid amplification of cDNA
end (5′RACE) PCR [13, 16], in which one common for-
ward primer is designed as the adapter sequence at the 5′
end, and another primer corresponding to the C region of
the TCR, or of each BCR isotype, is used as a reverse
primer (Fig. 2). This method allows efficient and less-biased
PCR amplification of TCR and BCR cDNA.

The combination of NGS technology with this cDNA
library construction method enables us to obtain an
unprecedented amount of information about TCRs and
BCRs. For a single sample, we can generate at most 10
million sequence reads of the expressed receptor genes,
which should provide a comprehensive characterization of

Fig. 1 Scientific areas covered by immunogenomics/immunopharma-
cogenomics. Immunogenomics (IG)/immunopharmacogenomics (IPG)
approaches can be applied to better understand the pathogenesis of
autoimmune diseases, immune rejection after organ transplantation,
graft-versus-host disease (GVHD) and graft-versus-leukemia (GVL)
effects after bone marrow transplantation (BMT) or hematopoietic
stem cell transplantation (HSCT), food allergy, and immune responses
following vaccine treatments and cancer treatments including immu-
notherapy. These approaches are also important for the establishment
of methods to predict efficacy or adverse events after treatment by
various immune-modulating agents
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the TCR or BCR repertoires. We have applied this approach
to clinical samples to determine specific T-cell populations
that have infiltrated into tumor tissues or malignant
ascites [17, 18], or to identify specific T-cell populations
that have expanded or decreased during the course of
treatment [19–27]. Furthermore, we have utilized it to
characterize the BCR repertoire to diagnose and monitor
B-cell-related disease conditions such as food allergy as
well as autoimmune and infectious diseases [28].

Identifying neoantigen-specific TCRs for cancer
immunotherapy

Recently in the field of oncology, monoclonal antibodies
that block immune checkpoint molecules such as CTLA-4,
PD-1, and PD-L1, have shown significant clinical benefit,
and have revolutionized cancer immunotherapy [29].

Tumor tissues often evolve multiple mechanisms to
escape from immune-mediated destruction of tumor cells
[30]. One of these mechanisms involves cell-surface
expression of immune checkpoint molecules, such as
CTLA-4, PD-1, and PD-L1 [31]. Durable responses have
been frequently observed with antibodies against these
molecules [32]. A higher number of somatic mutations has
been shown to be correlated with better clinical responses to
these anti-immune checkpoint antibodies [33–35]. It is
suspected that higher numbers of somatic mutations
generate higher numbers of good immunogenic neoanti-
gens, which are somatic-mutation-derived cancer-specific
antigens expressed on HLA molecules of cancer cells.
These antigens are capable of activating T cells, which are

considered to drive the clinical effects of immune
checkpoint inhibitors. There has been significant interest in
harnessing the neoantigen-specific immune response in
clinical settings. Leisegang et al. [36] have reported the
efficacy of TCR-engineered T cells targeting the cancer-
specific p68 mutation (mp68) in eradicating very large solid
tumors in mice. Adoptive transfer of patient-derived tumor-
infiltrating lymphocytes (TILs) has also yielded positive
clinical results in a small subset of patients with solid
tumors [37, 38]. To facilitate the translation of these
promising findings into clinical use, we have reported a
time-efficient approach to identify neoantigen-specific
TCRs using blood [39]. Notably, our protocol requires a
total of two weeks, beginning from T-cell priming with
candidate neoantigen peptides to identifying neoantigen-
specific TCRs [39]. This rapid process is critical for the
application of neoantigen-specific TCR-engineered T cells
in clinical settings.

Characterizing T-cell changes during cancer
immunotherapy

Given the complex and dynamic nature of the tumor
immune microenvironment, it is critically important to
analyze the molecular nature of immune responses in
patients who are treated with cancer immunotherapy. In
particular, the pre-existing balance between immune-active
and immune-suppressive molecules in the tumor
microenvironment mediates clinical response (Fig. 3). In the
context of melanoma, several immunotherapies, including
ipilimumab-targeting CTLA-4, pembrolizumab and

Fig. 2 Strategy of TCR and
BCR sequencing. The PCR
adapter is tailed to cDNA that is
reversely transcribed from
mRNA isolated from B or
T cells, whole lymphocytes,
white blood cells, or tissues of
interest. For BCR sequencing,
PCR is carried out using a
forward primer for the PCR
adapter (red) and a reverse
primer for the constant region of
each BCR isotype (green).
Quantitative PCR (qPCR) is
used to estimate the expression
level of each BCR isotype. For
TCR sequencing, PCR is carried
out using a forward primer for
the PCR adapter and a reverse
primer for the TCR constant
region. The PCR products are
subject to BCR or TCR
sequencing with next-generation
sequencers
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nivolumab-targeting PD-1, have been approved by the U.S.
Food and Drug Administration. However, only a fraction of
patients respond to these immunotherapies. Previous studies
have shown that PD-L1 expression as well as the density
and location of T cells in metastatic melanomas were pre-
dictive of response to PD-1 blockade [40]. Our analysis of
the tumor TCRβ repertoire of melanoma patients under-
going nivolumab treatment revealed that oligoclonal
expansion of TILs as well as increased expression of PD-
L1, granzyme A (GZMA), and HLA-A were associated with
treatment response [22].

Since it is technically possible to obtain comprehensive
information about T lymphocytes in cancer tissues, blood,
and cancer-related effusions by sequencing of TCR, these
approaches should enable us to further characterize the
detailed mechanisms of immune responses in these
treatments.

Characterizing T-cell changes during non-immune-
targeted cancer therapy

Using NGS to evaluate the immune components in cancer
patients who are treated with non-immune-targeted
therapies has yielded extremely useful information for
disease monitoring and clinical outcome prediction. The
relationship between TILs and patient prognosis was first
reported in a study of epithelial ovarian cancer [41]. Patients
exhibiting an increased fraction of CD3+ TILs had better

survival, indicating that the immune response may have an
important role in determining clinical outcomes. Sub-
sequent characterization of the infiltrated lymphocytic
fraction in these cases revealed the importance of CD8+

T-cell populations in determining better outcomes [42]. It
was hypothesized that the lack of effector CD8+ T cells in
the malignant pleural effusion resulted from defects in
CD8+ T-cell recruitment due to the immunosuppressive
effects of the disease [43], allowing the malignant cancer
cells to proliferate. The use of TCR sequencing may help to
further differentiate the T-cell populations that are present in
a particular environment. As compared to conventional flow
cytometry techniques or immunological assays, compre-
hensive characterization of the T-cell repertoire by NGS
provides information about specific subpopulations that are
present in tumor tissues or ascitic/pleural effusions,
enabling us to decipher which populations have key roles in
treatment response. In our study of malignant effusions
from ovarian cancer patients, we observed enriched T-cell
clones that were not common to those found in tumors [17].
Furthermore, the abundant TCR clonotypes in CD4+, CD8
+, and CD4+CD25+ T-cell populations in these samples
were mutually exclusive, indicating that the immune
microenvironments in tumors and ascites are entirely
distinct [17].

The presence of TILs is associated with favorable clinical
outcomes in several tumor types. In the context of bladder
cancer, a small cohort study has documented an increase in

Fig. 3 Characterization of the tumor immune microenvironment and
immune responses induced by cancer immunotherapy. The pre-
existing balance between immune-active and immune-suppressive
cells/molecules in the tumor microenvironment affects clinical
responses to immune checkpoint blockades in cancer immunotherapy.
In the state in which cancer progresses, the immune-suppressive side is

more dominant compared to the immune-active side in the tumor
microenvironment. After treatment with immune checkpoint block-
ades, if the immune-suppressive side is still dominant compared to the
immune-active side, a poor clinical response is expected. However, if
the immune-active side becomes more dominant compared to the
immune-suppressive side, a favorable clinical response is expected
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both infiltrative B cell and T cells into the bladder tissues
after BCG intravesical treatment, and those cases revealed a
lower incidence of disease recurrence [44]. In our study
investigating immune regulation in muscle-invasive bladder
cancer, we found that oligoclonal expansion of TILs was
significantly associated with longer recurrence-free survival
(RFS) of patients who underwent definitive surgery [20].
Higher neoantigen load was also associated with longer
RFS. These molecular patterns may thus provide useful
prognostic markers and serve as a tool for prediction of
disease recurrence following each respective treatment.

Regulatory T cells (Tregs) in tumors were shown to be
associated with poor clinical outcomes in various cancer
types [45]. However, one study found that high numbers of
Tregs in follicular lymphoma (FL) tissues were associated
with better clinical outcomes [46]. A subsequent report
concluded that a specific intrafollicular Treg pattern, rather
than number of Tregs, was correlated with poor survival
[47]. In addition, it remains unclear whether Tregs suppress
the immune system in an antigen-specific manner.
Interestingly, we found that Tregs characterized from
pretreatment FL biopsy specimens were highly clonal [18].
In line with previous research, perifollicular CD8+ T cells in
tumors showed stronger clonal expansion compared to the
intrafollicular CD8+ T cells, suggesting that antigen-
specific CD8+ T cells capable of recognizing FL cells

may be excluded from malignant follicles by some unde-
termined mechanism [18].

While nivolumab and pembrolizumab have been
approved for the second-line treatment of recurrent or
metastatic squamous cell carcinoma of the head and neck
(SCCHN), SCCHN in the locoregionally advanced stage is
currently treated with chemoradiation therapy and surgery.
We investigated tumor tissues from patients with locor-
egionally advanced SCCHN prior to chemoradiotherapy to
examine the possible roles of the host immune system in
SCCHN [26]. Interestingly, clonal expansion of T cells was
significantly stronger in human papilloma virus (HPV)-
negative tumors compared with HPV-positive tumors.
HLA-A expression levels were also significantly higher in
HPV-negative tumors. Additionally, higher GMZB levels in
tumor tissues were significantly correlated with longer RFS
independent of other clinicopathologic parameters. These
findings imply differences in immune microenvironment
between HPV-negative and HPV-positive tumors.
Additionally, pretreatment levels of immune markers, such
as GZMB, might serve as one of the predictors of recurrence
risk for patients with locoregionally advanced disease.

Cryoablation is used for the treatment of renal-cell
carcinoma (RCC) as well as other cancer types. This type of
treatment is expected to attract immune cells through
inflammatory signals. Studies of cryoablation in RCC and

Fig. 4 Possible mechanism of cryoablation-induced immune-mediated
elimination of cancer cells in distant lesions. Cryoablation damages
tumor cells while proteins are likely to be kept intact. Damaged cells
release inflammatory signals like cytokines and chemokines. This
stimulates infiltration of antigen-presenting cells (APCs) and lym-
phocytes into the tumor microenvironment. Dead cancer cells are

phagocytosed by APCs, and proteins in cancer cells are processed and
presented on HLA molecules of APCs as tumor-antigen-specific
peptides. These antigens are recognized by tumor-antigen-specific
CD8+ lymphocytes, resulting in activation and proliferation of tumor-
antigen-specific T cells. Expanded T cells may go into circulation in
blood, and eliminate cancer cells in distant tumor lesions
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prostate cancer have indeed demonstrated its ability to
induce a tumor-specific cytotoxic T-cell response [48, 49].
Moreover, a study in a mouse melanoma model showed that
cryoablation resulted in an increase of infiltration of
macrophages and dendritic cells (DCs) in the tumor
microenvironment [50]. We analyzed the TCRβ repertoire
in tumor tissues and blood samples from kidney cancer
patients before and 3 months after cryoablation to better
characterize the tumor and peripheral immune response
during the treatment. Clonal expansion of certain T-cell
clones was observed in the tissues after the treatment, and
some of these clonotypes also expanded in peripheral blood
samples. This would suggest that cryoablation can induce
not only local but also systemic T-cell responses. In line
with previous findings, we observed an increase in CD11c+

cells (macrophages and DCs) in the post-cryoablation tis-
sues. Interestingly, CD8+ expression levels (CD8+ T-cell
infiltration) were significantly associated with antigen pre-
sentation, which was measured by HLA-A expression.
Altogether, these molecular changes have enabled us to
better characterize the immune-mediated response to
cryoablation (Fig. 4). In the clinical context, expanded TCR
sequences that emerge after cryoablation might be applied
for cancer-antigen-specific TCR-engineered T-cell therapy.

Applications of TCR/BCR sequencing in other
diseases

Pathogenesis of autoimmune diseases

Tissue infiltrating lymphocytes in an affected lesion have an
important role in the pathogenesis of autoimmune diseases.
For example, CD20+ B cells and CD8+ T cells have been
identified as the major infiltrating lymphocytes in the
thyroid of patients with autoimmune thyroid disease (AITD)
[51]. Infiltration of CD4+ and CD8+ T cells is related to
progression of renal dysfunction and enrichment of CD3
+CD4−CD8− (double negative) T cells in salivary gland is
suggested to contribute to the damage of the tissues in
patients with systemic lupus erythematosus [52–54]. Fur-
thermore, persistent activation of certain clonal T and B
cells has been observed in various autoimmune disease
conditions. Hence, characterizing the human immune cells
including Type 1T helper cells (Th1), Type 2T helper cells
(Th2), and B cells in blood and/or affected lesions of
patients with autoimmune diseases should provide valuable
information to aid in understanding the molecular
pathogenesis of autoimmune diseases. In this regard,
quantification of unique T-cell and B-cell subpopulations
through the use of high-throughput sequencing of TCRs and
BCRs in a temporal and spatial manner should contribute to
a better understanding of these diseases. In addition, this
type of knowledge can be applied to improvements in

diagnosis, prognosis and selection of patients for appro-
priate therapies [55].

For example, inflammatory bowel disease (IBD), such as
Crohn’s disease (CD) and ulcerative colitis, is a chronic
inflammatory condition of intestines likely caused by dys-
function of innate and adaptive immune responses that are
likely related to commensal microbiota [56]. In these dis-
ease conditions, oligoclonally expanded CD4+ T cells were
persistently present in preoperative and postoperative dis-
ease lesions [56]. Our study of inflamed tissue specimens
from CD patients demonstrated expansion of oligoclonal
T cells whose TCR sequences were not observed in corre-
sponding normal tissues [57], suggesting that certain
disease-causative T cells could be culprits for intestinal
inflammation in CD. Further analysis of sorted T-cell sub-
populations will provide a better understanding of immune
dysfunctions that contribute to CD/IBD pathogenesis.

Pathogenesis of food allergy

In the United States, ~15 million people suffer from food
allergies, including 1 in 13 children. Interestingly, there are
unique geographic patterns of possible antigens causing
food allergy [58]. For instance, peanut allergies kill
100–150 people in the US each year [59], but are uncom-
mon in Asian countries. For example, in Japan, the esti-
mated number of deaths in children from peanut allergies
was 14 in the seven years between 1995 and 2001 [60]. On
the other hand, allergy to shellfish is highly prevalent in
Asian countries such as Japan, Philippines and Thailand
[61]; population surveys show the prevalence rate in teen-
agers in Singapore to be 5.23% [58]. Allergy can be char-
acterized into two major phases; the sensitization phase and
the effector phase. Dendritic cells with food-specific anti-
gens on their HLA molecules stimulate CD4+ Th2 cells that
have TCRs recognizing these antigens. These activated
CD4+ cells promote B cells to produce allergen-specific IgE
in the sensitization stage [62]. These T cells also help
maintain the allergen-specific IgE level in the late phase. A
number of studies have indicated various potential roles of
Th1, Th9, Th17, and Th22 effector T cells in food allergy
[63–65]. Hence, the quantitative analysis of TCR and BCR
repertoires in patients with food allergy will help to deter-
mine the inter-individual differences and intra-individual
time-course changes. We conducted a preliminary analysis
of the BCR repertoire in patients with peanut allergy prior
to and post oral immunotherapy (OIT) to determine changes
in the BCR repertoire during the course of treatment [28].
Through OIT, certain immunoglobulin heavy chain alpha
(IGHA) and IGH gamma (IGHG) clones were oligoclonally
enriched, and overall diversity of the BCR repertoire was
significantly reduced. The identification of specific BCR
sequences that are involved in the development of peanut
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allergy is a critical next step, as this information can help
shed light on the detailed mechanism of the molecular
pathology of food allergy.

Pathogenesis of GVHD after HCT

Hematopoietic cell transplantation (HCT) is now one of the
essential treatment options for patients with hematologic
diseases. The obstacles in this treatment are graft
rejection or graft-versus-host disease (GVHD), which
are an impediment to the success of HCT. T cells are
known to play a key role in both graft rejection and
GVHD [66, 67].

The immune response of host cells against the donor
cells is initiated by recognition of the antigen(s) presented
on HLA molecules of the donor cells. This is referred to as
the sensitization stage. The host T cells recognize the donor
cells and start to proliferate. The cells then destroy and
eliminate the donor cells from the host, which is termed the
effector stage [68]. There are three general forms of graft
rejection. They are hyperacute, acute, or chronic [68].
Hyperacute rejection normally occurs within minutes to
hours after transplantation due to pre-existing antibodies
and effector T cells against the graft cells. Acute rejection
usually occurs within six months following transplantation,
while chronic rejection manifests months to years after
transplantation. Several studies have shown that recipient-
derived cytotoxic T cells might cause acute graft rejection

through recognition of HLA-A, HLA-B, or HLA-C antigens
of donor cells [69–71]. The disparity of these HLA alleles
increases the risk of acute graft rejection.

GVHD occurs when the donor T cells attack the host
tissue and the host cells are unable to mount an immuno-
logical response against the graft cells [72]. GVHD can be
classified into two phases, acute or chronic. These two
phases differ in the symptoms, time of onset and target
tissues. Acute GVHD usually occurs within 3 months after
the transplantation and often causes severe damage to the
skin, liver, and gastrointestinal tract. Chronic GVHD is
observed after 100 days of the transplantation and displays a
more diverse set of clinical manifestations similar to the
systemic autoimmune syndromes [72, 73]. The develop-
ment of GVHD and its severity is likely to depend on
various factors including age and source of the graft.
Generally, the incidence of GVHD is higher in patients
whose donor is unrelated or whose HLA types are not well
matched. Older patients are likely to have a higher risk of
developing GVHD compared to younger patients. Having a
donor with a different sex also increases risk. The
pathophysiology of GVHD is very complex. Prior to
transplantation, patients receive a conditioning regimen
which consists of chemotherapy and/or radiotherapy and is
used to suppress the host immune function to prevent graft
rejection. However, this treatment may in fact cause damage
to tissues and induce inflammation. Tissue damage and
proinflammatory cytokines will then trigger the activation

Fig. 5 Immune characterization
of graft-versus-host disease
(GVHD). GVHD occurs when
donor T cells recognize host-
cell-specific antigens. When
host-antigen-specific T cells
recognize antigens in certain
tissues, T cells are activated and
proliferate in host tissues. Such
expanded T cells can be detected
in blood samples after
hematopoietic stem cell
transplantation (HSCT) or bone
marrow transplantation (BMT)
before acute GVHD symptoms
become overt
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of donor-derived T cells, which will mediate cytotoxicity
against the target host cells [73]. Several studies have
shown that the activated donor-derived cytotoxic
T cells play an important role in the development of acute
GVHD [74, 75]. Moreover, a lower level of regulatory
T cells [76] is suggested to be associated with acute and
chronic GVHD [77].

We have performed a comprehensive high-throughput
analysis of the TCR repertoire in acute GVHD patients as
well as in non-GVHD patients using the next-generation
sequencing platform. We found that certain T-cell clones
were activated in the course of GVHD development.
Moreover, stronger oligoclonal enrichment was observed in
GVHD patients around the time when they were diagnosed
with GVHD, compared to the controls [27] (Fig. 5),
suggesting that clonal expansion immediately following
HSCT transplantation might serve as a biomarker of risk for
GVHD. Characterization of the TCR repertoire by deep
sequencing is therefore informative and may contribute to a
better understanding of the molecular mechanisms of
GVHD pathophysiology.

Challenges and future directions

Sample quality and sorting of different populations of
immune cells

Sequencing data from sorted immune cells can enhance our
understanding of the role of specific subsets of cells.
However, obtaining a sufficient amount of tissue to quantify
the functional subtypes of T cells is a challenge in certain
disease conditions. In this regard, since the TCR repertoire
of each subset of T cells is likely to be distinct, we may
analyze the TCR information of each subset of T cells in
blood and determine which subset of T cells has infiltrated
into the cancer tissue. Indeed, in our analysis of serial tumor
and peripheral blood mononuclear cell (PBMC) samples
from non-small cell lung cancer (NSCLC) patients receiv-
ing anti-PD-1 therapy, we found in one case that dom-
inantly expanded T-cell clones in the peripheral blood were
concordant with those found within the tumor [78]. Thus,
TCR sequencing of sorted blood samples may provide
information about TIL subpopulations when the two
repertoires are comparatively analyzed.

One major advantage of our cDNA sequencing approach
is that we do not have to isolate T cells from the cancer
tissue because TCRs are expressed only in T cells. This
makes the characterization of TCR repertoires of TILs much
easier. However, to obtain a more complete picture of the
immune response mechanism in cancer, we will undoubt-
edly need a holistic approach that integrates TCR repertoire
analysis with somatic-mutation analysis, determination of
HLA types, and analysis of proteasome processing systems

in the antigen presentation machinery. This poses a big
technical challenge but will be crucial to accurately assess
the cellular mechanisms that determine effective immune
function in the cancer microenvironment.

Data analysis

Owing to the complexity and diversity of the TCR reper-
toire, TCR NGS data analysis represents a very challenging
bioinformatics task. There are several publicly available
software packages for TCR NGS data analysis, including
IMGT/HighV-QUEST [79], MiXCR [80], Decombinator
[81], and IgBlast [82]. IMGT/HighV-QUEST, developed by
the international ImMunoGeneTics information system
(IMGT), is a widely used online system for the standardized
analysis of collections of rearranged nucleotide sequences
of TCR and BCR. However, the input data is limited to less
than 500,000 reads per run. Decombinator [81] was
developed based on the classic approach of Aho and
Corasick of pattern matching and it includes a novel
modification to correct for sequencing error. MiXCR
also considers sequencing quality. This package further
performs correction of PCR and sequencing errors, as well
as rescues low-quality sequencing data. In addition,
MiXCR’s VDJTools package is available for data
presentation.

Our group has developed a novel algorithm of V(D)J
decomposition, Tcrip [83], which we have used in combi-
nation with a ‘remapping’ step for unmapped read analysis
to effectively analyze the cDNA sequence of both the TCR
α and β repertoires [83]. Compared to the widely used
online software IMGT/HighV-QUEST [79], our algorithm
has a much greater input capacity (up to millions per job),
which is extremely critical for analyzing high-volume NGS
data. Moreover, compared to MiXCR, our algorithm can
provide additional information such as unmapped sequence
reads, which has enabled us to discover molecular changes
of biological and genetic importance. For example, we have
observed a relatively large proportion of TCRβ reads con-
taining intronic sequences in NSCLC patient samples who
were treated with multiple chemotherapy regimens but not
in the healthy donor samples [83]. In these intron-
containing cDNA sequences, introns between the J–C seg-
ments are correctly spliced out. Hence, the contamination of
genomic DNA is very unlikely. Given that those patients
have received intensive chemotherapy (2–4 different regi-
mens), we hypothesize that their T lymphocytes have been
severely damaged by chemotherapy, which has caused
impairment in their splicing machinery. For the analysis of
the BCR repertoire sequencing data, we have developed an
analogous algorithm, Bcrip [28], which provides highly
concordant clonotype assignments (V–J–C and CDR3) as
well as the potential to detect novel exons.
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Pairing of TCRαβ sequencing—functional analysis for
reconstruction of TCR

Although TCRβ sequencing alone is sufficient to determine
TCR clonality, it is important to gather information on both
the alpha and beta transcripts of the TCR since antigen
specificity is determined by the conformational pairing of
the two molecules [84]. Previous efforts to elucidate pairing
information have involved single-cell sorting and Sanger
sequencing of the isolated T-cell clone [85–87]. However,
single-cell methods are limited in throughput and by
expensive costs, and the field will inevitably require meth-
ods to examine millions of T-cell or B-cell repertoires to
monitor the dynamic changes of our immune responses. In
recent reports, investigators have scaled up the throughput
of sequencing pair transcripts in B cells [88], however, this
method still falls short on the total number of reads derived
from each sample compared to our new method. Currently,
we can predict the combination of α- and β-chains that
constitute the TCR if the proportion of T cells of particular
interest is highly expanded. However, when α- and β-chains
are present at lower frequencies, it is almost impossible to
predict the combination of the two chains.

In the future, it will be essential to develop more efficient
methods for elucidating paired transcript information to
decipher antigen specificity. A number of studies have
proposed methods to address TCR pairing without the use
of single-cell technologies [89, 90]. One such method relies
on a pairing algorithm: T cells from the same individual are
split into a subset of wells and amplified with barcode
sequences to identify which well each α- or β-sequence
came from [90]. Putative pairs are then identified based on
the fact that the true TCRα and β pairs should occupy the
same wells. By comparing the well occupancy patterns of
each α- and β-sequence, those sharing the same barcode
more frequently than expected by chance are determined to
be pairs. This method has been used to identify 200,000
TCRα and β pairs from PBMC samples seeded at 160,000
cells per well, with a false discovery rate of 1 percent.

Summary

The use of next-generation sequencing for the genetic
characterization of the immune system, known as immu-
nogenomics/immunopharmacogenomics, will be important
for a deeper understanding of the pathogenesis of various
disease conditions. Abnormal immune responses in our
body lead to the development of autoimmune diseases and
food allergy. Rejection of recipient cells or donor cells is
also caused by uncontrolled immune responses in the reci-
pient. There have been many reports indicating that acti-
vated immune responses through the drug–HLA interaction
are present in drug-induced skin hypersensitivity and liver

toxicity. The importance of host immune responses has
been recognized in cancer treatments, not only for immu-
notherapy but also for cytotoxic agents and molecular tar-
geted drugs. Thus, characterization of the TCR and BCR
repertoire by means of NGS will ultimately enable us to
identify the molecular mechanisms underlying various dis-
eases. In addition, this approach may contribute to the
identification of antigens that are associated with disease
onset or progression. Computational analyses to draw
meaningful inferences of functional recognition receptors
on immune cells, however, remain a major challenge. In this
review, we have tried to summarize the importance of TCR
and BCR deep sequencing, and propose immunogenomics/
immunopharmacogenomics as the next frontier in scientific
discovery, as it continues to uncover the complex nature of
our immune system, which has critical roles in the patho-
genesis of various diseases.
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