Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

S100A7: from mechanism to cancer therapy

Abstract

Within the tumor, malignant and stromal cells support each other by secreting a wide variety of growth factors and cytokines, allowing tumor growth and disease progression. The identification and regulation of those key factors in this crosstalk has opened the opportunity to develop new therapeutic strategies that not only act on the tumor cells but also on the stroma. Among these factors, S100A7 protein has gained interest in the last years. With key roles in cell motility its expression correlates with increased tumor growth, angiogenesis and metastatic potential. This work aims to deepen in the role played by extracellular S100A7 in the tumor microenvironment, offering a new integrative insight of its mechanism of action on each cellular compartment (tumor, endothelial, immune and fibroblast). As a result, we demonstrate its implication in cell migration and invasion, and its important contribution to the formation of a proinflammatory and proangiogenic environment that favors tumor progression and metastasis. Furthermore, we define its possible role in the pre-metastatic niche formation. Considering the relevance of S100A7 in cancer progression, we have developed neutralizing monoclonal antibodies, reporting for the first time the proof of principle of this promising therapeutic strategy for cancer treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Chen F, Zhuang X, Lin L, Yu P, Wang Y, Shi Y et al. New horizons in tumor microenvironment biology: challenges and opportunities. BMC Med 2015; 13: 45.

    Article  Google Scholar 

  2. Quail DF, Joyce JA . Microenvironmental regulation of tumor progression and metastasis. Nat Med 2013; 19: 1423–1437.

    Article  CAS  Google Scholar 

  3. Limaverde-Sousa G, Sternberg C, Ferreira CG . Antiangiogenesis beyond VEGF inhibition: a journey from antiangiogenic single-target to broad-spectrum agents. Cancer Treat Rev 2014; 40: 548–557.

    Article  CAS  Google Scholar 

  4. Heldin CH . Targeting the PDGF signaling pathway in tumor treatment. Cell Commun Signal 2013; 11: 97.

    Article  Google Scholar 

  5. Yamada T, Takeuchi S, Kita K, Bando H, Nakamura T, Matsumoto K et al. Hepatocyte growth factor induces resistance to anti-epidermal growth factor receptor antibody in lung cancer. J Thorac Oncol 2012; 7: 272–280.

    Article  CAS  Google Scholar 

  6. Donato R, Cannon BR, Sorci G, Riuzzi F, Hsu K, Weber DJ et al. Functions of S100 proteins. Curr Mol Med 2013; 13: 24–57.

    Article  CAS  Google Scholar 

  7. Bresnick AR, Weber DJ, Zimmer DB . S100 proteins in cancer. Nat Rev Cancer 2015; 15: 96–109.

    Article  CAS  Google Scholar 

  8. Leclerc E, Vetter SW . The role of S100 proteins and their receptor RAGE in pancreatic cancer. Biochim Biophys Acta 2015; 1852: 2706–2711.

    Article  CAS  Google Scholar 

  9. Padilla L, Dakhel S, Hernandez JL . S100 to receptor for advanced glycation end-products binding assay: looking for inhibitors. Biochem Biophys Res Commun 2014; 446: 404–409.

    Article  CAS  Google Scholar 

  10. Chen H, Xu C, Jin Q, Liu Z . S100 protein family in human cancer. Am J Cancer Res 2014; 4: 89–115.

    PubMed  PubMed Central  Google Scholar 

  11. Klingelhofer J, Grum-Schwensen B, Beck MK, Knudsen RS, Grigorian M, Lukanidin E et al. Anti-S100A4 antibody suppresses metastasis formation by blocking stroma cell invasion. Neoplasia 2012; 14: 1260–1268.

    Article  CAS  Google Scholar 

  12. Schweizer MT, Carducci MA . From bevacizumab to tasquinimod: angiogenesis as a therapeutic target in prostate cancer. Cancer J 2013; 19: 99–106.

    Article  CAS  Google Scholar 

  13. Hernandez JL, Padilla L, Dakhel S, Coll T, Hervas R, Adan J et al. Therapeutic targeting of tumor growth and angiogenesis with a novel anti-S100A4 monoclonal antibody. PLoS One 2013; 8: e72480.

    Article  CAS  Google Scholar 

  14. Dakhel S, Padilla L, Adan J, Masa M, Martinez JM, Roque L et al. S100P antibody-mediated therapy as a new promising strategy for the treatment of pancreatic cancer. Oncogenesis 2014; 3: e92.

    Article  CAS  Google Scholar 

  15. Zhang H, Wang Y, Chen Y, Sun S, Li N, Lv D et al. Identification and validation of S100A7 associated with lung squamous cell carcinoma metastasis to brain. Lung Cancer 2007; 57: 37–45.

    Article  Google Scholar 

  16. Al-Haddad S, Zhang Z, Leygue E, Snell L, Huang A, Niu Y et al. Psoriasin (S100A7) expression and invasive breast cancer. Am J Pathol 1999; 155: 2057–2066.

    Article  CAS  Google Scholar 

  17. Tripathi SC, Matta A, Kaur J, Grigull J, Chauhan SS, Thakar A et al. Nuclear S100A7 is associated with poor prognosis in head and neck cancer. PLoS One 2010; 5: e11939.

    Article  Google Scholar 

  18. Wolf R, Howard OM, Dong HF, Voscopoulos C, Boeshans K, Winston J et al. Chemotactic activity of S100A7 (Psoriasin) is mediated by the receptor for advanced glycation end products and potentiates inflammation with highly homologous but functionally distinct S100A15. J Immunol 2008; 181: 1499–1506.

    Article  CAS  Google Scholar 

  19. Kataoka K, Ono T, Murata H, Morishita M, Yamamoto KI, Sakaguchi M et al. S100A7 promotes the migration and invasion of osteosarcoma cells via the receptor for advanced glycation end products. Oncol Lett 2012; 3: 1149–1153.

    Article  CAS  Google Scholar 

  20. Shubbar E, Vegfors J, Carlstrom M, Petersson S, Enerback C . Psoriasin (S100A7) increases the expression of ROS and VEGF and acts through RAGE to promote endothelial cell proliferation. Breast Cancer Res Treat 2012; 134: 71–80.

    Article  CAS  Google Scholar 

  21. Emberley ED, Niu Y, Njue C, Kliewer EV, Murphy LC, Watson PH . Psoriasin (S100A7) expression is associated with poor outcome in estrogen receptor-negative invasive breast cancer. Clin Cancer Res 2003; 9: 2627–2631.

    CAS  PubMed  Google Scholar 

  22. Nasser MW, Qamri Z, Deol YS, Ravi J, Powell CA, Trikha P et al. S100A7 enhances mammary tumorigenesis through upregulation of inflammatory pathways. Cancer Res 2012; 72: 604–615.

    Article  CAS  Google Scholar 

  23. Nasser MW, Wani NA, Ahirwar DK, Powell CA, Ravi J, Elbaz M et al. RAGE mediates S100A7-induced breast cancer growth and metastasis by modulating the tumor microenvironment. Cancer Res 2015; 75: 974–985.

    Article  CAS  Google Scholar 

  24. Jinquan T, Vorum H, Larsen CG, Madsen P, Rasmussen HH, Gesser B et al. Psoriasin: a novel chemotactic protein. J Invest Dermatol 1996; 107: 5–10.

    Article  CAS  Google Scholar 

  25. Kohler G, Milstein C . Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975; 256: 495–497.

    Article  CAS  Google Scholar 

  26. Robinson MJ, Tessier P, Poulsom R, Hogg N . The S100 family heterodimer, MRP-8/14, binds with high affinity to heparin and heparan sulfate glycosaminoglycans on endothelial cells. J Biol Chem 2002; 277: 3658–3665.

    Article  CAS  Google Scholar 

  27. Jin Q, Chen H, Luo A, Ding F, Liu Z . S100A14 stimulates cell proliferation and induces cell apoptosis at different concentrations via receptor for advanced glycation end products (RAGE). PLoS One 2011; 6: e19375.

    Article  CAS  Google Scholar 

  28. Sorci G, Riuzzi F, Agneletti AL, Marchetti C, Donato R . S100B causes apoptosis in a myoblast cell line in a RAGE-independent manner. J Cell Physiol 2004; 199: 274–283.

    Article  CAS  Google Scholar 

  29. Vegfors J, Ekman AK, Stoll SW, Bivik Eding C, Enerback C . Psoriasin (S100A7) promotes stress-induced angiogenesis. Br J Dermatol 2016; 175: 1263–1273.

    Article  CAS  Google Scholar 

  30. McCullough KC, Basta S, Knotig S, Gerber H, Schaffner R, Kim YB et al. Intermediate stages in monocyte-macrophage differentiation modulate phenotype and susceptibility to virus infection. Immunology 1999; 98: 203–212.

    Article  CAS  Google Scholar 

  31. Peng Q, Cai H, Sun X, Li X, Mo Z, Shi J . Alocasia cucullata exhibits strong antitumor effect in vivo by activating antitumor immunity. PLoS One 2013; 8: e75328.

    Article  CAS  Google Scholar 

  32. Bettum IJ, Vasiliauskaite K, Nygaard V, Clancy T, Pettersen SJ, Tenstad E et al. Metastasis-associated protein S100A4 induces a network of inflammatory cytokines that activate stromal cells to acquire pro-tumorigenic properties. Cancer Lett 2014; 344: 28–39.

    Article  CAS  Google Scholar 

  33. Zhang H, Zhao Q, Chen Y, Wang Y, Gao S, Mao Y et al. Selective expression of S100A7 in lung squamous cell carcinomas and large cell carcinomas but not in adenocarcinomas and small cell carcinomas. Thorax 2008; 63: 352–359.

    Article  CAS  Google Scholar 

  34. Wolf S, Haase-Kohn C, Lenk J, Hoppmann S, Bergmann R, Steinbach J et al. Expression, purification and fluorine-18 radiolabeling of recombinant S100A4: a potential probe for molecular imaging of receptor for advanced glycation endproducts in vivo? Amino Acids 2011; 41: 809–820.

    Article  CAS  Google Scholar 

  35. Rich L, Whittaker P . Collagen and picrosirius red staining: a polarized light assessment of fibrillar hue and spatial distribution. Braz J Morphol Sci 2005; 22: 7.

    Google Scholar 

  36. McKeown SR . Defining normoxia, physoxia and hypoxia in tumours-implications for treatment response. Br J Radiol 2014; 87: 20130676.

    Article  CAS  Google Scholar 

  37. West NR, Watson PH . S100A7 (psoriasin) is induced by the proinflammatory cytokines oncostatin-M and interleukin-6 in human breast cancer. Oncogene 2010; 29: 2083–2092.

    Article  CAS  Google Scholar 

  38. Krop I, Marz A, Carlsson H, Li X, Bloushtain-Qimron N, Hu M et al. A putative role for psoriasin in breast tumor progression. Cancer Res 2005; 65: 11326–11334.

    Article  CAS  Google Scholar 

  39. Emberley ED, Niu Y, Leygue E, Tomes L, Gietz RD, Murphy LC et al. Psoriasin interacts with Jab1 and influences breast cancer progression. Cancer Res 2003; 63: 1954–1961.

    CAS  PubMed  Google Scholar 

  40. Chen L, Li J, Zhang J, Dai C, Liu X, Wang J et al. S100A4 promotes liver fibrosis via activation of hepatic stellate cells. J Hepatol 2014; 62: 156–164.

    Article  Google Scholar 

  41. Choi SH, Park JY . Regulation of the hypoxic tumor environment in hepatocellular carcinoma using RNA interference. Cancer Cell Int 2017; 17: 3.

    Article  Google Scholar 

  42. Moserle L, Jimenez-Valerio G, Casanovas O . Antiangiogenic therapies: going beyond their limits. Cancer Discov 2014; 4: 31–41.

    Article  CAS  Google Scholar 

  43. Huber J, Furnkranz A, Bochkov VN, Patricia MK, Lee H, Hedrick CC et al. Specific monocyte adhesion to endothelial cells induced by oxidized phospholipids involves activation of cPLA2 and lipoxygenase. J Lipid Res 2006; 47: 1054–1062.

    Article  CAS  Google Scholar 

  44. Junqueira LC, Bignolas G, Brentani RR . Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections. Histochem J 1979; 11: 447–455.

    Article  CAS  Google Scholar 

  45. Ducharme A, Frantz S, Aikawa M, Rabkin E, Lindsey M, Rohde LE et al. Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction. J Clin Invest 2000; 106: 55–62.

    Article  CAS  Google Scholar 

  46. Laenkholm AV, Knoop A, Ejlertsen B, Rudbeck T, Jensen MB, Muller S et al. ESR1 gene status correlates with estrogen receptor protein levels measured by ligand binding assay and immunohistochemistry. Mol Oncol 2012; 6: 428–436.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was partially supported by Grants from the Spanish MINECO (RTC-2015-3318-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J L Hernandez.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padilla, L., Dakhel, S., Adan, J. et al. S100A7: from mechanism to cancer therapy. Oncogene 36, 6749–6761 (2017). https://doi.org/10.1038/onc.2017.283

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.283

This article is cited by

Search

Quick links