Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Integrin regulation by tissue factor promotes cancer stemness and metastatic dissemination in breast cancer

Abstract

Tissue Factor (TF) is the initiator of blood coagulation but also functions as a signal transduction receptor. TF expression in breast cancer is associated with higher tumor grade, metastasis and poor survival. The role of TF signaling on the early phases of metastasis has never been addressed. Here, we show an association between TF expression and metastasis as well as cancer stemness in 574 breast cancer patients. In preclinical models, blockade of TF signaling inhibited metastasis tenfold independent of primary tumor growth. TF blockade caused a reduction in epithelial-to-mesenchymal-transition, cancer stemness and expression of the pro-metastatic markers Slug and SOX9 in several breast cancer cell lines and in ex vivo cultured tumor cells. Mechanistically, TF forms a complex with β1-integrin leading to inactivation of β1-integrin. Inhibition of TF signaling induces a shift in TF-binding from α3β1-integrin to α6β4 and dictates FAK recruitment, leading to reduced epithelial-to-mesenchymal-transition and tumor cell differentiation. In conclusion, TF signaling inhibition leads to reduced pro-metastatic transcriptional programs, and a subsequent integrin β1 and β4-dependent reduction in metastasic dissemination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: TF associates with metastasis in patients with ER-negative breast tumors, and TF signaling induces metastasis.
Fig. 2: TF signaling inhibition reduces EMT and CSC program in vitro.
Fig. 3: Blockade of TF signaling reduces EMT and CSC program in ex vivo cells.
Fig. 4: TF determines β1-integrin localization in the cell membrane.
Fig. 5: Inhibition of TF signaling increases expression of, and crosstalk with α6β4-integrin.
Fig. 6: Schematic overview.

Similar content being viewed by others

References

  1. DeSantis C, Ma J, Goding Sauer A, Newman LA, Jemal A. Breast cancer statistics, 2017, racial disparity in mortality by state. CA Cancer J Clin. 2017;67:439–48.

    Article  PubMed  Google Scholar 

  2. Kim DH, Xing T, Yang Z, Dudek R, Lu Q, Chen YH. Epithelial mesenchymal transition in embryonic development, tissue repair and cancer: a comprehensive overview. J Clin Med. 2017;7:1.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15:178–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Garg M. Epithelial plasticity and cancer stem cells: Major mechanisms of cancer pathogenesis and therapy resistance. World J Stem Cells. 2017;19:118–26.

    Article  Google Scholar 

  5. Ishiwata T. Cancer stem cells and epithelial-mesenchymal transition: novel therapeutic targets for cancer. Pathol Int. 2016;66:601–8.

    Article  CAS  PubMed  Google Scholar 

  6. Kotiyal S, Bhattacharya S. Breast cancer stem cells, EMT and therapeutic targets. Biochem Biophys Res Commun. 2014;453:112–6.

    Article  CAS  PubMed  Google Scholar 

  7. Gupta PB, Chaffer CL, Weinberg RA. Cancer stem cells: mirage or reality? Nat Med. 2009;15:1010–2.

    Article  CAS  PubMed  Google Scholar 

  8. Da Cruz Paula A, Lopes C. Implications of different cancer stem cell phenotypes in breast cancer. Anticancer Res. 2017;37:2173–83.

    Article  PubMed  Google Scholar 

  9. Shibue T, Weinberg RA. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat Rev Clin Oncol. 2017;14:611–29.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Shaker H, Harrison H, Clarke R, Landberg G, Bundred NJ, Versteeg HH, et al. Tissue Factor promotes breast cancer stem cell activity in vitro. Oncotarget. 2017;8:25915–27.

    Article  PubMed  Google Scholar 

  11. Labelle M, Begum S, Hynes RO. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell. 2011;20:576–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. van den Berg YW, Osanto S, Reitsma PH, Versteeg HH. The relationship between tissue factor and cancer progression: insights from bench and bedside. Blood. 2012;199:924–32.

    Article  Google Scholar 

  13. Dorfleutner A, Hintermann E, Tarui T, Takada Y, Ruf W. Cross-talk of integrin alpha3beta1 and tissue factor in cell migration. Mol Biol Cell. 2004;15:4416–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Versteeg HH, Schaffner F, Kerver M, Petersen HH, Ahamed J, Felding-Habermann B, et al. Inhibition of tissue factor signaling suppresses tumor growth. Blood. 2008;111:190–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ahamed J, Versteeg HH, Kerver M, Chen VM, Mueller BM, Hogg PJ, et al. Disulfide isomerization switches tissue factor from coagulation to cell signaling. Proc Natl Acad Sci USA. 2006;103:13932–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jessani N, Humphrey M, McDonald WH, Niessen S, Masuda K, Gangadharan B, et al. Carcinoma and stromal enzyme activity profiles associated with breast tumor growth in vivo. Proc Natl Acad Sci USA. 2004;101:13756–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Palumbo JS, Talmage KE, Massari JV, La Jeunesse CM, Flick MJ, Kombrinck KW, et al. Tumor cell-associated tissue factor and circulating hemostatic factors cooperate to increase metastatic potential through natural killer cell-dependent and-independent mechanisms. Blood. 2007;100:133–41.

    Article  Google Scholar 

  18. Guo W, Keckesova Z, Donaher JL, Shibue T, Tischler V, Reinhardt F, et al. Slug and Sox9 cooperatively determine the mammary stem cell state. Cell 2012;48:1015–28.

    Article  Google Scholar 

  19. Beaver CM, Ahmed A, Masters JR. Clonogenicity: holoclones and meroclones contain stem cells. PLoS ONE. 2014;9:e89834.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Schaffner F, Yokota N, Carneiro-Lobo T, Kitano M, Schaffer M, Anderson GM, et al. Endothelial protein C receptor function in murine and human breast cancer development. PLoS ONE. 2013;8:e61071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kocatürk B, Versteeg HH. Tissue factor-integrin interactions in cancer and thrombosis: every Jack has his Jill. J Thromb Haemost. 2013;11:285–93.

    Article  PubMed  Google Scholar 

  22. Seguin L, Desgrosellier JS, Weis SM, Cheresh DA. Integrins and cancer: regulators of cancer stemness, metastasis, and drug resistance. Trends Cell Biol. 2015;25:234–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Horton MA. The alpha v beta 3 integrin “vitronectin receptor”. Int J Biochem Cell Biol. 1997;29:721–5.

    Article  CAS  PubMed  Google Scholar 

  24. Belkin AM, Stepp MA. Integrins as receptors for laminins. Microsc Res Tech. 2000;51:280–301.

    Article  CAS  PubMed  Google Scholar 

  25. Marwali MR, Rey-Ladino J, Dreolini L, Shaw D, Takei F. Membrane cholesterol regulates LFA-1 function and lipid raft heterogeneity. Blood. 2003;102:215–22.

    Article  CAS  PubMed  Google Scholar 

  26. Rothmeier AS, Liu E, Chakrabarty S, Disse J, Mueller BM, Østergaard H, et al. Identification of the integrin-binding site on coagulation factor VIIa required for proangiogenic PAR2 signaling. Blood. 2018;131:674–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bierie B, Pierce SE, Kroeger C, Stover DG, Pattabiraman DR, Thiru P, et al. Integrin-β4 identifies cancer stem cell-enriched populations of partially mesenchymal carcinoma cells. Proc Natl Acad Sci USA. 2017;114:E2337–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sawada M, Miyake S, Ohdama S, Matsubara O, Masuda S, Yakumaru K, et al. Expression of tissue factor in non-small-cell lung cancers and its relationship to metastasis. Br J Cancer. 1999;79:472–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yamashita H, Kitayama J, Ishikawa M, Nagawa H. Tissue factor expression is a clinical indicator of lymphatic metastasis and poor prognosis in gastric cancer with intestinal phenotype. J Surg Oncol. 2007;95:324–31.

    Article  CAS  PubMed  Google Scholar 

  30. Nitori N, Ino Y, Nakanishi Y, Yamada T, Honda K, Yanagihara K, et al. Prognostic significance of tissue factor in pancreatic ductal adenocarcinoma. Clin Cancer Res. 2005;11:2531–9.

    Article  CAS  PubMed  Google Scholar 

  31. Seto S, Onodera H, Kaido T, Yoshikawa A, Ishigami S, Arii S, et al. Tissue factor expression in human colorectal carcinoma: correlation with hepatic metastasis and impact on prognosis. Cancer. 2000;88:295–301.

    Article  CAS  PubMed  Google Scholar 

  32. Sturm U, Luther T, Albrecht S, Flössel C, Grossmann H, Müller M. Immunohistological detection of tissue factor in normal and abnormal human mammary glands using monoclonal antibodies. Virchows Arch A Pathol Anat Histopathol. 1992;421:79–86.

    Article  CAS  PubMed  Google Scholar 

  33. Ueno T, Toi M, Koike M, Nakamura S, Tominaga T. Tissue factor expression in breast cancer tissues: its correlation with prognosis and plasma concentration. Br J Cancer. 2000;83:164–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rydén L, Grabau D, Schaffner F, Jönsson PE, Ruf W, Belting M. Evidence for tissue factor phosphorylation and its correlation with protease-activated receptor expression and the prognosis of primary breast cancer. Int J Cancer. 2010;126:2330–40.

    PubMed  PubMed Central  Google Scholar 

  35. Zhang X, Li Q, Zhao H, Ma L, Meng T, Qian J, et al. Pathological expression of tissue factor confers promising antitumor response to a novel therapeutic antibody SC1 in triple negative breast cancer and pancreatic adenocarcinoma. Oncotarget. 2017;8:59086–102.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer. N Engl J Med. 2010;363:1938–48.

    Article  CAS  PubMed  Google Scholar 

  37. Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms. Cell 2011;147:275–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Richards JO, Albers AJ, Smith TS, Tjoe JA. NK cell-mediated antibody-dependent cellular cytotoxicity is enhanced by tamoxifen in HER2/neu non-amplified, but not HER2/neu-amplified, breast cancer cells. Cancer Immunol Immunother. 2016;65:1325–35.

    Article  CAS  PubMed  Google Scholar 

  39. Pastushenko I, Brisebarre A, Sifrim A, Fioramonti M, Revenco T, Boumahdi S, et al. Identification of the tumour transition states occurring during EMT. Nature 2018;556:463–8.

    Article  CAS  PubMed  Google Scholar 

  40. Magnus N, Garnier D, Meehan B, McGraw S, Lee TH, Caron M, et al. Tissue factor expression provokes escape from tumor dormancy and leads to genomic alterations. Proc Natl Acad Sci USA. 2014;111:3544–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yilmaz M, Christofori G. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev. 2009;28:15–33.

    Article  PubMed  Google Scholar 

  42. Chen QK, Lee K, Radisky DC, Nelson CM. Extracellular matrix proteins regulate epithelial-mesenchymal transition in mammary epithelial cells. Differentiation. 2013;86:126–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Teplyakov A, Obmolova G, Malia TJ, Wu B, Zhao Y, Taudte S, et al. Crystal structure of tissue factor in complex with antibody 10H10 reveals the signaling epitope. Cell Signal. 2017;36:139–44.

    Article  CAS  PubMed  Google Scholar 

  44. Ott I, Fischer EG, Miyagi Y, Mueller BM, Ruf W. A role for tissue factor in cell adhesion and migration mediated by interaction with actin-binding protein 280. J Cell Biol. 1998;140:1241–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Goel HL, Pursell B, Chang C, Shaw LM, Mao J, Simin K, et al. GLI1 regulates a novel neuropilin-2/α6β1 integrin based autocrine pathway that contributes to breast cancer initiation. EMBO Mol Med. 2013;5:488–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Levy S, Shoham T. Protein-protein interactions in the tetraspanin web. Physiology. 2005;20:218–24.

    Article  CAS  PubMed  Google Scholar 

  47. Nisticò P, Di Modugno F, Spada S, Bissell MJ. β1 and β4 integrins: from breast development to clinical practice. Breast Cancer Res. 2014;16:459.

    Article  PubMed  PubMed Central  Google Scholar 

  48. van Nes JG, de Kruijf EM, Faratian D, van de Velde CJ, Putter H, Falconer C, et al. COX2 expression in prognosis and in prediction to endocrine therapy in early breast cancer patients. Breast Cancer Res Treat. 2011;125:671–85.

    Article  PubMed  Google Scholar 

  49. Kocatürk B, Van den Berg YW, Tieken C, Mieog JS, de Kruijf EM, Engels CC, et al. Alternatively spliced tissue factor promotes breast cancer growth in a β1 integrin-dependent manner. Proc Natl Acad Sci USA. 2013;110:11517–22.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kocatürk B, Versteeg HH. Orthotopic injection of breast cancer cells into the mammary fat pad of mice to study tumor growth. J Vis Exp. 2015;96:51967.

    Google Scholar 

  51. Ünlü B, Bogdanov VY, Versteeg HH. Interplay between alternatively spliced tissue factor and full length tissue factor in modulating coagulant activity of endothelial cells. Thromb Res. 2017;156:1–7.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Y.W. van den Berg for immunohistochemical staining and E.H. Laghmani for technical assistance.

Funding

This study was supported by the Dutch Cancer Society (UL 2015-7594), The Netherlands Organization for Scientific Research (VIDI 91710329) and Worldwide Cancer Research (15-1186). VYB and CSL are partially supported by the NIH/NCI (grant R01CA190717).

Author information

Authors and Affiliations

Authors

Contributions

BÜ, BK, AMdRR, CSL, NS, and RFPvdA performed the experiments, acquired and analyzed data; EJB, IN and DK performed immunohistochemical stainings and analyzed data. PJKK, VYB and WR provided study material and reagents. BÜ and HHV designed the project, wrote the paper and prepared the figures. All authors reviewed and approved the paper.

Corresponding author

Correspondence to Henri H. Versteeg.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ünlü, B., Kocatürk, B., Rondon, A.M.R. et al. Integrin regulation by tissue factor promotes cancer stemness and metastatic dissemination in breast cancer. Oncogene 41, 5176–5185 (2022). https://doi.org/10.1038/s41388-022-02511-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02511-7

Search

Quick links