Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

CAMK2γ in intestinal epithelial cells modulates colitis-associated colorectal carcinogenesis via enhancing STAT3 activation

Abstract

Inflammation is one of the major risk factors for cancer. Here, we show that calcium/calmodulin-dependent protein kinase II gamma (CAMK2γ) in intestinal epithelial cells (IECs) modulates inflammatory signals and promotes colitis-associated cancer (CAC) in mice. We have identified CAMK2γ as a downstream target of colitis-induced WNT5A signaling. Furthermore, we have shown that CAMK2γ protects against intestine tissue injury by increasing IEC survival and proliferation. Calcium/calmodulin-dependent protein kinase II gamma knockout mice displayed reduced CAC. Furthermore, we used bone marrow transplantation to reveal that CAMK2γ in IECs, but not immune cells, was crucial for its effect on CAC. Consistently, transgenic over-expression of CAMK2γ in IECs accelerated CAC development. Mechanistically, CAMK2γ in IECs enhanced epithelial signal transducer and activator of transcription 3 (STAT3) activation to promote survival and proliferation of colonic epithelial cells during CAC development. These results thus identify a new molecular mechanism mediated by CAMK2γ in IECs during CAC development, thereby providing a potential new therapeutic target for CAC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Grivennikov SI, Greten FR, Karin M . Immunity, inflammation, and cancer. Cell 2010; 140: 883–899.

    Article  CAS  Google Scholar 

  2. Trinchieri G . Cancer and inflammation: an old intuition with rapidly evolving new concepts. Annu Rev Immunol 2012; 30: 677–706.

    Article  CAS  Google Scholar 

  3. Polk DB, Peek RM Jr . Helicobacter pylori: gastric cancer and beyond. Nat Rev Cancer 2010; 10: 403–414.

    Article  CAS  Google Scholar 

  4. Wotherspoon AC . A critical review of the effect of Helicobacter pylori eradication on gastric MALT lymphoma. Curr Gastroenterol Rep 2000; 2: 494–498.

    Article  CAS  Google Scholar 

  5. Arzumanyan A, Reis HM, Feitelson MA . Pathogenic mechanisms in HBV- and HCV-associated hepatocellular carcinoma. Nat Rev Cancer 2013; 13: 123–135.

    Article  CAS  Google Scholar 

  6. Elinav E, Nowarski R, Thaiss CA, Hu B, Jin C, Flavell RA . Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer 2013; 13: 759–771.

    Article  CAS  Google Scholar 

  7. Siegel R, Naishadham D, Jemal A . Cancer statistics, 2012. CA Cancer J Clin 2012; 62: 10–29.

    Article  Google Scholar 

  8. Rubin DC, Shaker A, Levin MS . Chronic intestinal inflammation: inflammatory bowel disease and colitis-associated colon cancer. Front Immunol 2012; 3: 107.

    Article  Google Scholar 

  9. Gillen CD, Walmsley RS, Prior P, Andrews HA, Allan RN . Ulcerative colitis and Crohn’s disease: a comparison of the colorectal cancer risk in extensive colitis. Gut 1994; 35: 1590–1592.

    Article  CAS  Google Scholar 

  10. Jess T, Rungoe C, Peyrin-Biroulet L . Risk of colorectal cancer in patients with ulcerative colitis: a meta-analysis of population-based cohort studies. Clin Gastroenterol Hepatol 2012; 10: 639–645.

    Article  Google Scholar 

  11. Eaden JA, Abrams KR, Mayberry JF . The risk of colorectal cancer in ulcerative colitis: a meta-analysis. Gut 2001; 48: 526–535.

    Article  CAS  Google Scholar 

  12. von Roon AC, Reese G, Teare J, Constantinides V, Darzi AW, Tekkis PP . The risk of cancer in patients with Crohn’s disease. Dis Colon Rectum 2007; 50: 839–855.

    Article  Google Scholar 

  13. Ullman TA, Itzkowitz SH . Intestinal inflammation and cancer. Gastroenterology 2011; 140: 1807–1816.

    Article  CAS  Google Scholar 

  14. Lasry A, Zinger A, Ben-Neriah Y . Inflammatory networks underlying colorectal cancer. Nat Immunol 2016; 17: 230–240.

    Article  CAS  Google Scholar 

  15. Van Der Kraak L, Gros P, Beauchemin N . Colitis-associated colon cancer: is it in your genes? World J Gastroenterol 2015; 21: 11688–11699.

    Article  CAS  Google Scholar 

  16. Foersch S, Neurath MF . Colitis-associated neoplasia: molecular basis and clinical translation. Cell Mol Life Sci 2014; 71: 3523–3535.

    Article  CAS  Google Scholar 

  17. Lakatos PL, Lakatos L . Risk for colorectal cancer in ulcerative colitis: changes, causes and management strategies. World J Gastroenterol 2008; 14: 3937–3947.

    Article  Google Scholar 

  18. Yashiro M . Ulcerative colitis-associated colorectal cancer. World J Gastroenterol 2014; 20: 16389–16397.

    Article  Google Scholar 

  19. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    Article  CAS  Google Scholar 

  20. Tobimatsu T, Fujisawa H . Tissue-specific expression of four types of rat calmodulin-dependent protein kinase II mRNAs. J Biol Chem 1989; 264: 17907–17912.

    CAS  PubMed  Google Scholar 

  21. Bui JD, Calbo S, Hayden-Martinez K, Kane LP, Gardner P, Hedrick SM . A role for CaMKII in T cell memory. Cell 2000; 100: 457–467.

    Article  CAS  Google Scholar 

  22. Huang W, Ghisletti S, Saijo K, Gandhi M, Aouadi M, Tesz GJ et al. Coronin 2 A mediates actin-dependent de-repression of inflammatory response genes. Nature 2011; 470: 414–418.

    Article  CAS  Google Scholar 

  23. Timmins JM, Ozcan L, Seimon TA, Li G, Malagelada C, Backs J et al. Calcium/calmodulin-dependent protein kinase II links ER stress with Fas and mitochondrial apoptosis pathways. J Clin Invest 2009; 119: 2925–2941.

    Article  CAS  Google Scholar 

  24. Liu X, Yao M, Li N, Wang C, Zheng Y, Cao X . CaMKII promotes TLR-triggered proinflammatory cytokine and type I interferon production by directly binding and activating TAK1 and IRF3 in macrophages. Blood 2008; 112: 4961–4970.

    Article  CAS  Google Scholar 

  25. Huang W, Ghisletti S, Perissi V, Rosenfeld MG, Glass CK . Transcriptional integration of TLR2 and TLR4 signaling at the NCoR derepression checkpoint. Mol Cell 2009; 35: 48–57.

    Article  Google Scholar 

  26. Si J, Collins SJ . Activated Ca2+/calmodulin-dependent protein kinase IIgamma is a critical regulator of myeloid leukemia cell proliferation. Cancer Res 2008; 68: 3733–3742.

    Article  CAS  Google Scholar 

  27. Gu Y, Chen T, Meng Z, Gan Y, Xu X, Lou G et al. CaMKII γ, a critical regulator of CML stem/progenitor cells, is a target of the natural product berbamine. Blood 2012; 120: 4829–4839.

    Article  CAS  Google Scholar 

  28. Wang YY, Zhao R, Zhe H . The emerging role of CaMKII in cancer. Oncotarget 2015; 6: 11725–11734.

    PubMed  PubMed Central  Google Scholar 

  29. Meng Z, Li T, Ma X, Wang X, Van Ness C, Gan Y et al. Berbamine inhibits the growth of liver cancer cells and cancer-initiating cells by targeting Ca(2)(+)/calmodulin-dependent protein kinase II. Mol Cancer Ther 2013; 12: 2067–2077.

    Article  CAS  Google Scholar 

  30. Wirtz S, Neufert C, Weigmann B, Neurath MF . Chemically induced mouse models of intestinal inflammation. Nat Protoc 2007; 2: 541–546.

    Article  CAS  Google Scholar 

  31. Solomon L, Mansor S, Mallon P, Donnelly E, Hoper M, Loughrey M et al. The dextran sulphate sodium (DSS) model of colitis: an overview. Comp Clin Pathol 2010; 19: 235–239.

    Article  CAS  Google Scholar 

  32. Liang J, Nagahashi M, Kim EY, Harikumar KB, Yamada A, Huang WC et al. Sphingosine-1-phosphate links persistent STAT3 activation, chronic intestinal inflammation, and development of colitis-associated cancer. Cancer Cell 2013; 23: 107–120.

    Article  CAS  Google Scholar 

  33. Kuhl M, Sheldahl LC, Malbon CC, Moon RT . Ca(2+)/calmodulin-dependent protein kinase II is stimulated by Wnt and Frizzled homologs and promotes ventral cell fates in Xenopus. J Biol Chem 2000; 275: 12701–12711.

    Article  CAS  Google Scholar 

  34. De A . Wnt/Ca2+ signaling pathway: a brief overview. Acta Biochim Biophys Sin 2011; 43: 745–756.

    Article  CAS  Google Scholar 

  35. Topol L, Jiang X, Choi H, Garrett-Beal L, Carolan PJ, Yang Y . Wnt-5a inhibits the canonical Wnt pathway by promoting GSK-3-independent beta-catenin degradation. J Cell Biol 2003; 162: 899–908.

    Article  CAS  Google Scholar 

  36. Planell N, Lozano JJ, Mora-Buch R, Masamunt MC, Jimeno M, Ordas I et al. Transcriptional analysis of the intestinal mucosa of patients with ulcerative colitis in remission reveals lasting epithelial cell alterations. Gut 2013; 62: 967–976.

    Article  CAS  Google Scholar 

  37. Chassaing B, Aitken JD, Malleshappa M, Vijay-Kumar M . Dextran sulfate sodium (DSS)-induced colitis in mice. Curr Protoc Immunol 2014; 104: Unit 15 25.

  38. Perse M, Cerar A . Dextran sodium sulphate colitis mouse model: traps and tricks. J Biomed Biotechnol 2012; 2012: 718617.

    Article  Google Scholar 

  39. Thaker AI, Shaker A, Rao MS, Ciorba MA . Modeling colitis-associated cancer with azoxymethane (AOM) and dextran sulfate sodium (DSS). J Visual Exp 2012; 67: e4100.

    Google Scholar 

  40. De Robertis M, Massi E, Poeta ML, Carotti S, Morini S, Cecchetelli L et al. The AOM/DSS murine model for the study of colon carcinogenesis: from pathways to diagnosis and therapy studies. J Carcinog 2011; 10: 9.

    Article  CAS  Google Scholar 

  41. Nghiem P, Saati SM, Martens CL, Gardner P, Schulman H . Cloning and analysis of two new isoforms of multifunctional Ca2+/calmodulin-dependent protein kinase. Expression in multiple human tissues. J Biol Chem 1993; 268: 5471–5479.

    CAS  PubMed  Google Scholar 

  42. Braun AP, Schulman H . The multifunctional calcium/calmodulin-dependent protein kinase: from form to function. Annu Rev Physiol 1995; 57: 417–445.

    Article  CAS  Google Scholar 

  43. Blanpain C . Tracing the cellular origin of cancer. Nat cell biol 2013; 15: 126–134.

    Article  CAS  Google Scholar 

  44. Tanaka T, Kohno H, Suzuki R, Yamada Y, Sugie S, Mori H . A novel inflammation-related mouse colon carcinogenesis model induced by azoxymethane and dextran sodium sulfate. Cancer Sci 2003; 94: 965–973.

    Article  CAS  Google Scholar 

  45. Saleh M, Trinchieri G . Innate immune mechanisms of colitis and colitis-associated colorectal cancer. Nat Rev Immunol 2011; 11: 9–20.

    Article  CAS  Google Scholar 

  46. Greten FR, Eckmann L, Greten TF, Park JM, Li ZW, Egan LJ et al. IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 2004; 118: 285–296.

    Article  CAS  Google Scholar 

  47. Bollrath J, Phesse TJ, von Burstin VA, Putoczki T, Bennecke M, Bateman T et al. gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell 2009; 15: 91–102.

    Article  CAS  Google Scholar 

  48. Del Reino P, Alsina-Beauchamp D, Escos A, Cerezo-Guisado MI, Risco A, Aparicio N et al. Pro-oncogenic role of alternative p38 mitogen-activated protein kinases p38gamma and p38delta, linking inflammation and cancer in colitis-associated colon cancer. Cancer Res 2014; 74: 6150–6160.

    Article  CAS  Google Scholar 

  49. Neufert C, Becker C, Tureci O, Waldner MJ, Backert I, Floh K et al. Tumor fibroblast-derived epiregulin promotes growth of colitis-associated neoplasms through ERK. J Clin Invest 2013; 123: 1428–1443.

    Article  CAS  Google Scholar 

  50. Hughes KR, Sablitzky F, Mahida YR . Expression profiling of Wnt family of genes in normal and inflammatory bowel disease primary human intestinal myofibroblasts and normal human colonic crypt epithelial cells. Inflamm Bowel Dis 2011; 17: 213–220.

    Article  CAS  Google Scholar 

  51. Sato A, Kayama H, Shojima K, Matsumoto S, Koyama H, Minami Y et al. The Wnt5a-Ror2 axis promotes the signaling circuit between interleukin-12 and interferon-gamma in colitis. Sci Rep 2015; 5: 10536.

    Article  CAS  Google Scholar 

  52. Robles AI, Traverso G, Zhang M, Roberts NJ, Khan MA, Joseph C et al. Whole-exome sequencing analyses of inflammatory bowel disease-associated colorectal cancers. Gastroenterology 2016; 150: 931–943.

    Article  CAS  Google Scholar 

  53. Levanen B, Wheelock AM, Eklund A, Grunewald J, Nord M . Increased pulmonary Wnt (wingless/integrated)-signaling in patients with sarcoidosis. Resp Med 2011; 105: 282–291.

    Article  Google Scholar 

  54. Zhao C, Ma H, Bu X, Wang W, Zhang N . SFRP5 inhibits gastric epithelial cell migration induced by macrophage-derived Wnt5a. Carcinogenesis 2013; 34: 146–152.

    Article  CAS  Google Scholar 

  55. Grivennikov S, Karin E, Terzic J, Mucida D, Yu GY, Vallabhapurapu S et al. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 2009; 15: 103–113.

    Article  CAS  Google Scholar 

  56. Putoczki TL, Thiem S, Loving A, Busuttil RA, Wilson NJ, Ziegler PK et al. Interleukin-11 is the dominant IL-6 family cytokine during gastrointestinal tumorigenesis and can be targeted therapeutically. Cancer Cell 2013; 24: 257–271.

    Article  CAS  Google Scholar 

  57. Lo RK, Cheung H, Wong YH . Constitutively active Galpha16 stimulates STAT3 via a c-Src/JAK- and ERK-dependent mechanism. J Biol Chem 2003; 278: 52154–52165.

    Article  CAS  Google Scholar 

  58. Zhao L, Cheng G, Jin R, Afzal MR, Samanta A, Xuan YT et al. Deletion of interleukin-6 attenuates pressure overload-induced left ventricular hypertrophy and dysfunction. Circulation Res 2016; 118: 1918–1929.

    Article  CAS  Google Scholar 

  59. Nguyen A, Chen P, Cai H . Role of CaMKII in hydrogen peroxide activation of ERK1/2, p38 MAPK, HSP27 and actin reorganization in endothelial cells. FEBS lett 2004; 572: 307–313.

    Article  CAS  Google Scholar 

  60. Gibson RM, Laszlo GS, Nathanson NM . Calmodulin-dependent protein kinases phosphorylate gp130 at the serine-based dileucine internalization motif. Biochim Biophys Acta 2005; 1714: 56–62.

    Article  CAS  Google Scholar 

  61. Yue P, Turkson J . Targeting STAT3 in cancer: how successful are we? Exp Opin Invest Drugs 2009; 18: 45–56.

    Article  CAS  Google Scholar 

  62. Kortylewski M, Swiderski P, Herrmann A, Wang L, Kowolik C, Kujawski M et al. In vivo delivery of siRNA to immune cells by conjugation to a TLR9 agonist enhances antitumor immune responses. Nat Biotechnol 2009; 27: 925–932.

    Article  CAS  Google Scholar 

  63. Furtek SL, Backos DS, Matheson CJ, Reigan P . Strategies and approaches of targeting STAT3 for cancer treatment. ACS Chem Biol 2016; 11: 308–318.

    Article  CAS  Google Scholar 

  64. Backs J, Stein P, Backs T, Duncan FE, Grueter CE, McAnally J et al. The gamma isoform of CaM kinase II controls mouse egg activation by regulating cell cycle resumption. Proc Natl Acad Sci USA 2010; 107: 81–86.

    Article  CAS  Google Scholar 

  65. Brandl K, Sun L, Neppl C, Siggs OM, Le Gall SM, Tomisato W et al. MyD88 signaling in nonhematopoietic cells protects mice against induced colitis by regulating specific EGF receptor ligands. Proc Natl Acad Sci USA 2010; 107: 19967–19972.

    Article  CAS  Google Scholar 

  66. Gupta J, del Barco Barrantes I, Igea A, Sakellariou S, Pateras IS, Gorgoulis VG et al. Dual function of p38alpha MAPK in colon cancer: suppression of colitis-associated tumor initiation but requirement for cancer cell survival. Cancer Cell 2014; 25: 484–500.

    Article  CAS  Google Scholar 

  67. Cui W, Taub DD, Gardner K . qPrimerDepot: a primer database for quantitative real time PCR. Nucleic Acids Res 2007; 35: D805–D809.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Johannes Backs for providing the Camk2γ KO mice. We thank Dr Richard Ermel and the Animal Resource Center for the technical resources. We thank the pathologists from the City of Hope Pathology Core Lab for sample processing and analysis. We thank Dr Fong-Fong Chu and Dr Mei Kong at City of Hope for discussion. We also thank Dr Nancy Linford for providing editing assistance. This work is supported in part by 2NCI R01-CA139158, the National Natural Science Foundation of China (81270601 and 81328016) and the Open Research Fund of State Key Laboratory of Cellular Stress Biology, Xiamen University (SKLCSB2016KF002). Research reported in this publication was also supported by the National Cancer Institute of the National Institutes of Health under award number P30CA33572.

Author contributions

WH and RX supervised the project, designed the experiments and revised the manuscript. XM and ZM designed the experiments, performed most of the experiments and wrote the manuscript. XW, ZX, YG, JZ, LD, BK, MH, and XG performed the experiments. WMT assisted with the transgenic mouse line generation. LJ, JES, HY discussed the project, provided suggestions and revised the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R Xu or W Huang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Disclaimer

The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Meng, Z., Jin, L. et al. CAMK2γ in intestinal epithelial cells modulates colitis-associated colorectal carcinogenesis via enhancing STAT3 activation. Oncogene 36, 4060–4071 (2017). https://doi.org/10.1038/onc.2017.16

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.16

This article is cited by

Search

Quick links