Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Long noncoding RNA FTX inhibits hepatocellular carcinoma proliferation and metastasis by binding MCM2 and miR-374a

Subjects

Abstract

It has long been known that males are more susceptible than females to hepatocellular carcinoma (HCC), but the reason remains elusive. In this study, we investigated the expression and function of the long noncoding RNA FTX (lnc-FTX), an X-inactive-specific transcript (XIST) regulator transcribed from the X chromosome inactivation center, in both HCC and HCC gender disparity. lnc-FTX is expressed at higher levels in female livers than in male livers and is significantly downregulated in HCC tissues compared with normal liver tissues. Patients with higher lnc-FTX expression exhibited longer survival, suggesting that lnc-FTX is a useful prognostic factor for HCC patients. lnc-FTX inhibits HCC cell growth and metastasis both in vitro and in vivo. Mechanistically, lnc-FTX represses Wnt/β-catenin signaling activity by competitively sponging miR-374a and inhibits HCC cell epithelial–mesenchymal transition and invasion. In addition, lnc-FTX binds to the DNA replication licensing factor MCM2, thereby impeding DNA replication and inhibiting proliferation in HCC cells. In conclusion, these findings suggest that lnc-FTX may act as a tumor suppressor in HCC through physically binding miR-374a and MCM2. It may also be one of the reasons for HCC gender disparity and may potentially contribute to HCC treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

AFP:

α-fetoprotein

EdU:

5-ethynyl-2′-deoxyuridine

EMT:

epithelial–mesenchymal transition

HCC:

hepatocellular carcinoma

lnc-FTX:

long noncoding RNA FTX

lncRNA:

long non-coding RNA

MCM2:

minichromosome maintenance complex component 2

XCI:

X chromosome inactivation

XIST:

X-inactive-specific transcript

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A . Global cancer statistics, 2012. CA Cancer J Clin 2015; 65: 87–108.

    Article  Google Scholar 

  2. El-Serag HB, Rudolph KL . Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 2007; 132: 2557–2576.

    Article  CAS  Google Scholar 

  3. Yang D, Hanna DL, Usher J, LoCoco J, Chaudhari P, Lenz HJ et al. Impact of sex on the survival of patients with hepatocellular carcinoma: a surveillance, epidemiology, and end results analysis. Cancer 2014; 120: 3707–3716.

    Article  Google Scholar 

  4. Buch SC, Kondragunta V, Branch RA, Carr BI . Gender-based outcomes differences in unresectable hepatocellular carcinoma. Hepatol Int 2008; 2: 95–101.

    Article  Google Scholar 

  5. Dohmen K, Shigematsu H, Irie K, Ishibashi H . Longer survival in female than male with hepatocellular carcinoma. J Gastroenterol Hepatol 2003; 18: 267–272.

    Article  Google Scholar 

  6. Naugler WE, Sakurai T, Kim S, Maeda S, Kim K, Elsharkawy AM et al. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science 2007; 317: 121–124.

    Article  CAS  Google Scholar 

  7. Shimizu I, Kohno N, Tamaki K, Shono M, Huang HW, He JH et al. Female hepatology: favorable role of estrogen in chronic liver disease with hepatitis B virus infection. World J Gastroenterol 2007; 13: 4295–4305.

    Article  CAS  Google Scholar 

  8. Hou J, Zhou Y, Zheng Y, Fan J, Zhou W, Ng IO et al. Hepatic RIG-I predicts survival and interferon-alpha therapeutic response in hepatocellular carcinoma. Cancer Cell 2014; 25: 49–63.

    Article  CAS  Google Scholar 

  9. Chureau C, Prissette M, Bourdet A, Barbe V, Cattolico L, Jones L et al. Comparative sequence analysis of the X-inactivation center region in mouse, human, and bovine. Genome Res 2002; 12: 894–908.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Chureau C, Chantalat S, Romito A, Galvani A, Duret L, Avner P et al. Ftx is a non-coding RNA which affects Xist expression and chromatin structure within the X-inactivation center region. Hum Mol Genet 2011; 20: 705–718.

    Article  CAS  Google Scholar 

  11. Reiche K, Kasack K, Schreiber S, Luders T, Due EU, Naume B et al. Long non-coding RNAs differentially expressed between normal versus primary breast tumor tissues disclose converse changes to breast cancer-related protein-coding genes. PLoS One 2014; 9: e106076.

    Article  Google Scholar 

  12. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP . A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 2011; 146: 353–358.

    Article  CAS  Google Scholar 

  13. Tay Y, Kats L, Salmena L, Weiss D, Tan SM, Ala U et al. Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell 2011; 147: 344–357.

    Article  CAS  Google Scholar 

  14. Chi SW, Zang JB, Mele A, Darnell RB . Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 2009; 460: 479–486.

    Article  CAS  Google Scholar 

  15. Zinchuk V, Zinchuk O, Okada T . Quantitative colocalization analysis of multicolor confocal immunofluorescence microscopy images: pushing pixels to explore biological phenomena. Acta Histochem Cytochem 2007; 40: 101–111.

    Article  CAS  Google Scholar 

  16. Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 2010; 142: 409–419.

    Article  CAS  Google Scholar 

  17. Remus D, Beuron F, Tolun G, Griffith JD, Morris EP, Diffley JF . Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing. Cell 2009; 139: 719–730.

    Article  CAS  Google Scholar 

  18. Shechter D, Ying CY, Gautier J . DNA unwinding is an Mcm complex-dependent and ATP hydrolysis-dependent process. J Biol Chem 2004; 279: 45586–45593.

    Article  CAS  Google Scholar 

  19. Giaginis C, Vgenopoulou S, Vielh P, Theocharis S . MCM proteins as diagnostic and prognostic tumor markers in the clinical setting. Histol Histopathol 2010; 25: 351–370.

    CAS  PubMed  Google Scholar 

  20. Reena RM, Mastura M, Siti-Aishah MA, Munirah MA, Norlia A, Naqiyah I et al. Minichromosome maintenance protein 2 is a reliable proliferative marker in breast carcinoma. Ann Diagn Pathol 2008; 12: 340–343.

    Article  Google Scholar 

  21. Giaginis C, Georgiadou M, Dimakopoulou K, Tsourouflis G, Gatzidou E, Kouraklis G et al. Clinical significance of MCM-2 and MCM-5 expression in colon cancer: association with clinicopathological parameters and tumor proliferative capacity. Dig Dis Sci 2009; 54: 282–291.

    Article  CAS  Google Scholar 

  22. Sun M, Wu G, Li Y, Fu X, Huang Y, Tang R et al. Expression profile reveals novel prognostic biomarkers in hepatocellular carcinoma. Front Biosci (Elite Ed) 2010; 2: 829–840.

    Google Scholar 

  23. Quaglia A, McStay M, Stoeber K, Loddo M, Caplin M, Fanshawe T et al. Novel markers of cell kinetics to evaluate progression from cirrhosis to hepatocellular carcinoma. Liver Int 2006; 26: 424–432.

    Article  CAS  Google Scholar 

  24. Cai J, Guan H, Fang L, Yang Y, Zhu X, Yuan J et al. MicroRNA-374a activates Wnt/beta-catenin signaling to promote breast cancer metastasis. J Clin Invest 2013; 123: 566–579.

    Article  CAS  Google Scholar 

  25. Thiery JP, Acloque H, Huang RY, Nieto MA . Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139: 871–890.

    Article  CAS  Google Scholar 

  26. De Craene B, Berx G . Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer 2013; 13: 97–110.

    Article  CAS  Google Scholar 

  27. Batista PJ, Chang HY . Long noncoding RNAs: cellular address codes in development and disease. Cell 2013; 152: 1298–1307.

    Article  CAS  Google Scholar 

  28. Ma Y, Yang Y, Wang F, Moyer MP, Wei Q, Zhang P et al. Long non-coding RNA CCAL regulates colorectal cancer progression by activating Wnt/beta-catenin signalling pathway via suppression of activator protein 2alpha. Gut 2015.

  29. Xu D, Yang F, Yuan JH, Zhang L, Bi HS, Zhou CC et al. Long noncoding RNAs associated with liver regeneration 1 accelerates hepatocyte proliferation during liver regeneration by activating Wnt/beta-catenin signaling. Hepatology 2013; 58: 739–751.

    Article  CAS  Google Scholar 

  30. Yuan JH, Yang F, Wang F, Ma JZ, Guo YJ, Tao QF et al. A long noncoding RNA activated by TGF-beta promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell 2014; 25: 666–681.

    Article  CAS  Google Scholar 

  31. Wang Y, He L, Du Y, Zhu P, Huang G, Luo J et al. The long noncoding RNA lncTCF7 promotes self-renewal of human liver cancer stem cells through activation of Wnt signaling. Cell Stem Cell 2015; 16: 413–425.

    Article  CAS  Google Scholar 

  32. Ozsolak F, Poling LL, Wang Z, Liu H, Liu XS, Roeder RG et al. Chromatin structure analyses identify miRNA promoters. Genes Dev 2008; 22: 3172–3183.

    Article  CAS  Google Scholar 

  33. Monteys AM, Spengler RM, Wan J, Tecedor L, Lennox KA, Xing Y et al. Structure and activity of putative intronic miRNA promoters. RNA 2010; 16: 495–505.

    Article  Google Scholar 

  34. Siomi H, Siomi MC . Posttranscriptional regulation of microRNA biogenesis in animals. Mol Cell 2010; 38: 323–332.

    Article  CAS  Google Scholar 

  35. Hartwell HJ, Petrosky KY, Fox JG, Horseman ND, Rogers AB . Prolactin prevents hepatocellular carcinoma by restricting innate immune activation of c-Myc in mice. Proc Natl Acad Sci USA 2014; 111: 11455–11460.

    Article  CAS  Google Scholar 

  36. Shi L, Feng Y, Lin H, Ma R, Cai X . Role of estrogen in hepatocellular carcinoma: is inflammation the key? J Transl Med 2014; 12: 93.

    Article  Google Scholar 

  37. Zhao J, Ohsumi TK, Kung JT, Ogawa Y, Grau DJ, Sarma K et al. Genome-wide identification of polycomb-associated RNAs by RIP-seq. Mol Cell 2010; 40: 939–953.

    Article  CAS  Google Scholar 

  38. Wang P, Xue Y, Han Y, Lin L, Wu C, Xu S et al. The STAT3-binding long noncoding RNA lnc-DC controls human dendritic cell differentiation. Science 2014; 344: 310–313.

    Article  CAS  Google Scholar 

  39. You X, Vlatkovic I, Babic A, Will T, Epstein I, Tushev G et al. Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci 2015; 18: 603–610.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Le Qu and Mr Zhi-peng Xu from Department of Urology, Shanghai Changzheng Hospital and Dr Sheng-Xian Yuan and Dr Qi-Fei Tao from the Third Department of Hepatic Surgery, Eastern Hepatobiliary Hospital for technical assistance. This work was supported by grants from the State Key Program of National Natural Science Foundation of China (grant nos 81330037), the National Key Basic Research Program of China (973 Program) (grant nos 2015CB554004), the National Natural Science Foundation of China (grant nos 31201025, 81301831, 81301692, 81472691 and 81402269, and the National Natural Science Foundation of Shanghai (13ZR1448300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S-H Sun.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Yuan, JH., Huang, JF. et al. Long noncoding RNA FTX inhibits hepatocellular carcinoma proliferation and metastasis by binding MCM2 and miR-374a. Oncogene 35, 5422–5434 (2016). https://doi.org/10.1038/onc.2016.80

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.80

This article is cited by

Search

Quick links