Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

AMPK promotes tolerance to Ras pathway inhibition by activating autophagy

Abstract

Targeted inhibitors of oncogenic Ras (rat sarcoma viral oncogene)-Raf signaling have shown great promise in the clinic, but resistance remains a major challenge: 30% of tumors with pathway mutations do not respond to targeted inhibitors, and of the 70% that do respond, all eventually develop resistance. Before cancer cells acquire resistance, they respond to initial drug treatment either by undergoing apoptosis ('addiction') or by surviving treatment albeit with reduced growth ('tolerance'). As these drug-tolerant cells serve as a reservoir from which resistant cells eventually emerge, inhibiting the pathways that confer tolerance could potentially delay or even prevent recurrence. Here, we show that melanomas and other cancers acquire tolerance to Ras-Raf pathway inhibitors by activating autophagy, which is mediated by the cellular energy sensor AMP-activated protein kinase (AMPK). Blocking this AMPK-mediated autophagy sensitizes drug-tolerant melanomas to Ras-Raf pathway inhibitors. Conversely, activating AMPK signaling and autophagy enables melanomas that would otherwise be addicted to the Ras-Raf pathway to instead tolerate pathway inhibition. These findings identify a key mechanism of tolerance to Ras-Raf pathway inhibitors and suggest that blocking either AMPK or autophagy in combination with these targeted inhibitors could increase tumor regression and decrease the likelihood of eventual recurrence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

BRAF:

v-Raf murine sarcoma viral oncogene homolog B

RAS:

rat sarcoma viral oncogene

AMPK:

AMP-activated protein kinase

AICAR:

5-aminoimidazole-4-carboxamide ribonucleotide

GFP:

green fluorescent protein

LC3B:

microtubule-associated protein 1 light chain 3 beta

CQ:

chloroquine

Baf:

bafilomycin

ATG:

autophagy-related protein

wt:

wild type

mut:

mutant

shRNA:

short hairpin RNA.

References

  1. Bollag G, Hirth P, Tsai J, Zhang J, Ibrahim PN, Cho H et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 2010; 467: 596–599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tsai J, Lee JT, Wang W, Zhang J, Cho H, Mamo S et al. Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proc Natl Acad Sci USA 2008; 105: 3041–3046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 2011; 364: 2507–2516.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Flaherty KT . Narrative review: BRAF opens the door for therapeutic advances in melanoma. Ann Intern Med 2010; 153: 587–591.

    Article  PubMed  Google Scholar 

  5. Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 2010; 363: 809–819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Johannessen CM, Boehm JS, Kim SY, Thomas SR, Wardwell L, Johnson LA et al. COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 2010; 468: 968–972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Montagut C, Sharma SV, Shioda T, McDermott U, Ulman M, Ulkus LE et al. Elevated CRAF as a potential mechanism of acquired resistance to BRAF inhibition in melanoma. Cancer Res 2008; 68: 4853–4861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nazarian R, Shi H, Wang Q, Kong X, Koya RC, Lee H et al. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 2010; 468: 973–977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wagle N, Emery C, Berger MF, Davis MJ, Sawyer A, Pochanard P et al. Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. J Clin Oncol 2011; 29: 3085–3096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Poulikakos PI, Persaud Y, Janakiraman M, Kong X, Ng C, Moriceau G et al. RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature 2011; 480: 387–390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shi H, Kong X, Ribas A, Lo RS . Combinatorial treatments that overcome PDGFRbeta-driven resistance of melanoma cells to V600EB-RAF inhibition. Cancer Res 2011; 71: 5067–5074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sosman JA, Kim KB, Schuchter L, Gonzalez R, Pavlick AC, Weber JS et al. Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N Engl J Med 2012; 366: 707–714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Smalley KS . PLX-4032, a small-molecule B-Raf inhibitor for the potential treatment of malignant melanoma. Curr Opin Invest Drugs 2010; 11: 699–706.

    CAS  Google Scholar 

  14. Sondergaard JN, Nazarian R, Wang Q, Guo D, Hsueh T, Mok S et al. Differential sensitivity of melanoma cell lines with BRAFV600E mutation to the specific Raf inhibitor PLX4032. J Transl Med 2010; 8: 39.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sharma SV, Lee DY, Li B, Quinlan MP, Takahashi F, Maheswaran S et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 2010; 141: 69–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Flier JS, Mueckler MM, Usher P, Lodish HF . Elevated levels of glucose transport and transporter messenger RNA are induced by ras or src oncogenes. Science 1987; 235: 1492–1495.

    Article  CAS  PubMed  Google Scholar 

  17. Kawada K, Nakamoto Y, Kawada M, Hida K, Matsumoto T, Murakami T et al. Relationship between 18 F-fluorodeoxyglucose accumulation and KRAS/BRAF mutations in colorectal cancer. Clin Cancer Res 2012; 18: 1696–1703.

    Article  CAS  PubMed  Google Scholar 

  18. McArthur GA, Puzanov I, Amaravadi R, Ribas A, Chapman P, Kim KB et al. Marked, homogeneous, and early [18 F]fluorodeoxyglucose-positron emission tomography responses to vemurafenib in BRAF-mutant advanced melanoma. J Clin Oncol 2012; 30: 1628–1634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hardie DG . AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 2007; 8: 774–785.

    Article  CAS  PubMed  Google Scholar 

  20. Egan D, Kim J, Shaw RJ, Guan KL . The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR. Autophagy 2011; 7: 643–644.

    Article  PubMed  Google Scholar 

  21. Kim J, Kundu M, Viollet B, Guan KL . AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 2011; 13: 132–141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lum JJ, DeBerardinis RJ, Thompson CB . Autophagy in metazoans: cell survival in the land of plenty. Nat Rev Mol Cell Biol 2005; 6: 439–448.

    Article  CAS  PubMed  Google Scholar 

  23. Tsukada M, Ohsumi Y . Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett 1993; 333: 169–174.

    Article  CAS  PubMed  Google Scholar 

  24. Kim J, Guan KL . Regulation of the autophagy initiating kinase ULK1 by nutrients: Roles of mTORC1 and AMPK. Cell Cycle 2011; 10: 1337–1338.

    Article  CAS  PubMed  Google Scholar 

  25. Luo Z, Zang M, Guo W . AMPK as a metabolic tumor suppressor: control of metabolism and cell growth. Future Oncol 2010; 6: 457–470.

    Article  CAS  PubMed  Google Scholar 

  26. Ohsumi Y . Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol 2001; 2: 211–216.

    Article  CAS  PubMed  Google Scholar 

  27. Levine B, Klionsky DJ . Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 2004; 6: 463–477.

    Article  CAS  PubMed  Google Scholar 

  28. Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 2012; 8: 445–544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Johnson L, Mercer K, Greenbaum D, Bronson RT, Crowley D, Tuveson DA et al. Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature 2001; 410: 1111–1116.

    Article  CAS  PubMed  Google Scholar 

  30. Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, DePinho RA et al. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci USA 2004; 101: 3329–3335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Halaban R, Zhang W, Bacchiocchi A, Cheng E, Parisi F, Ariyan S et al. PLX4032, a selective BRAF(V600E) kinase inhibitor, activates the ERK pathway and enhances cell migration and proliferation of BRAF melanoma cells. Pigment Cell Melanoma Res 2010; 23: 190–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Strohecker AM, Guo JY, Karsli-Uzunbas G, Price SM, Chen GJ, Mathew R et al. Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E-driven lung tumors. Cancer Discov 2013; 3: 1272–1285.

    Article  CAS  PubMed  Google Scholar 

  33. Guo JY, Chen HY, Mathew R, Fan J, Strohecker AM, Karsli-Uzunbas G et al. Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev 2011; 25: 460–470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Strohecker AM, White E . Autophagy promotes BrafV600E-driven lung tumorigenesis by preserving mitochondrial metabolism. Autophagy 2014; 10: 384–385.

    Article  CAS  PubMed  Google Scholar 

  35. Yang S, Wang X, Contino G, Liesa M, Sahin E, Ying H et al. Pancreatic cancers require autophagy for tumor growth. Genes Dev 2011; 25: 717–729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Levy JM, Thompson JC, Griesinger AM, Amani V, Donson AM, Birks DK et al. Autophagy inhibition improves chemosensitivity in BRAF(V600E) brain tumors. Cancer Discov 2014; 4: 773–780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lock R, Kenific CM, Leidal AM, Salas E, Debnath J . Autophagy-dependent production of secreted factors facilitates oncogenic RAS-driven invasion. Cancer Discov 2014; 4: 466–479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zheng B, Jeong JH, Asara JM, Yuan YY, Granter SR, Chin L et al. Oncogenic B-RAF negatively regulates the tumor suppressor LKB1 to promote melanoma cell proliferation. Mol Cell 2009; 33: 237–247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cerezo M, Tichet M, Abbe P, Ohanna M, Lehraiki A, Rouaud F et al. Metformin blocks melanoma invasion and metastasis development in AMPK/p53-dependent manner. Mol Cancer Ther 2013; 12: 1605–1615.

    Article  CAS  PubMed  Google Scholar 

  40. Petti C, Vegetti C, Molla A, Bersani I, Cleris L, Mustard KJ et al. AMPK activators inhibit the proliferation of human melanomas bearing the activated MAPK pathway. Melanoma Res 2012; 22: 341–350.

    Article  CAS  PubMed  Google Scholar 

  41. Ma XH, Piao SF, Dey S, McAfee Q, Karakousis G, Villanueva J et al. Targeting ER stress-induced autophagy overcomes BRAF inhibitor resistance in melanoma. J Clin Invest 2014; 124: 1406–1417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gupta PB, Kuperwasser C, Brunet JP, Ramaswamy S, Kuo WL, Gray JW et al. The melanocyte differentiation program predisposes to metastasis after neoplastic transformation. Nat Genet 2005; 37: 1047–1054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O et al. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 2006; 7: R100.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Gamrekelashvili J, Kruger C, von Wasielewski R, Hoffmann M, Huster KM, Busch DH et al. Necrotic tumor cell death in vivo impairs tumor-specific immune responses. J Immunol 2007; 178: 1573–1580.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Tyler Jacks for providing us with mouse KRASmut/p53−/− NSCLC line, the Whitehead flow cytometry facility, and Nicki Watson and Wendy Salmon at the Whitehead Keck Imaging Facility for microscopy services. We thank Dr David Pincus and Dr Luke Whitesell for critical reading of the manuscript. This research was supported by grants from the Ellison Foundation (PBG) and Melanoma Research Alliance (#311800; PBG), a Yale SPORE in Skin Cancer funded by the National Cancer Institute (#1 P50 CA121974; RH), and funds from the NSFGRFP (#1122374; ESS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P B Gupta.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanduja, S., Feng, Y., Mathis, R. et al. AMPK promotes tolerance to Ras pathway inhibition by activating autophagy. Oncogene 35, 5295–5303 (2016). https://doi.org/10.1038/onc.2016.70

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.70

This article is cited by

Search

Quick links