Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

A crucial role of SUMOylation in modulating Sirt6 deacetylation of H3 at lysine 56 and its tumor suppressive activity

Abstract

Sirt6 is a histone deacetylase with NAD+-dependent activity. Sirt6 has been shown as a tumor suppressor partially via inhibiting the expression of c-Myc target genes and ribosome biogenesis. However, how to regulate Sirt6 activity is largely unknown. In this study, we identify that Sirt6 can be modified by small ubiquitin-like modifier. Sirt6 SUMOylation deficiency specifically decreases its deacetylation of H3K56 but not H3K9 in vivo. Mechanistically, we find that SUMOylation deficiency decreases Sirt6 binding with c-Myc, decreasing Sirt6 occupancy on the locus of c-Myc target genes. Therefore, Sirt6 SUMOylation deficiency reduces its deacetylation of H3k56 and its repression of c-Myc target genes. Moreover, Sirt6 SUMOylation deficiency reduces its suppression of cell proliferation and tumorigenesis. Thus, these results reveal that SUMOylation has an important role in regulation of Sirt6 deacetylation on H3K56, as well as its tumor suppressive activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Dutnall RN, Pillus L . Deciphering NAD-dependent deacetylases. Cell 2001; 105: 161–164.

    Article  CAS  Google Scholar 

  2. Klar AJ, Strathern JN, Broach JR, Hicks JB . Regulation of transcription in expressed and unexpressed mating type cassettes of yeast. Nature 1981; 289: 239–244.

    Article  CAS  Google Scholar 

  3. Burnett C, Valentini S, Cabreiro F, Goss M, Somogyvári M, Piper MD et al. Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature 2011; 477: 482–485.

    Article  CAS  Google Scholar 

  4. Chalkiadaki A, Guarente L . Sirtuins mediate mammalian metabolic responses to nutrient availability. Nat Rev Endocrinol 2012; 8: 287–296.

    Article  CAS  Google Scholar 

  5. Baur JA, Ungvari Z, Minor RK, Le Couteur DG, de Cabo R . Are sirtuins viable targets for improving healthspan and lifespan? Nat Rev Drug Discov 2012; 11: 443–461.

    Article  CAS  Google Scholar 

  6. Ardestani PM, Liang F . Sub-cellular localization, expression and functions of Sirt6 during the cell cycle in HeLa cells. Nucleus 2012; 3: 442–451.

    Article  Google Scholar 

  7. Bosch-Presegue L, Vaquero A . The dual role of sirtuins in cancer. Genes & cancer 2011; 2: 648–662.

    Article  CAS  Google Scholar 

  8. Lombard DB, Schwer B, Alt FW, Mostoslavsky R . SIRT6 in DNA repair, metabolism and ageing. J Intern Med 2008; 263: 128–141.

    Article  CAS  Google Scholar 

  9. Tennen RI, Berber E, Chua KF . Functional dissection of SIRT6: identification of domains that regulate histone deacetylase activity and chromatin localization. Mech Ageing Dev 2010; 131: 185–192.

    Article  CAS  Google Scholar 

  10. Kugel S, Mostoslavsky R . Chromatin and beyond: the multitasking roles for SIRT6. Trends Biochem Sci 2014; 39: 72–81.

    Article  CAS  Google Scholar 

  11. Kawahara TL, Michishita E, Adler AS, Damian M, Berber E, Lin M et al. SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span. Cell 2009; 136: 62–74.

    Article  CAS  Google Scholar 

  12. Sebastian C, Zwaans BM, Silberman DM, Gymrek M, Goren A, Zhong L et al. The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism. Cell 2012; 151: 1185–1199.

    Article  CAS  Google Scholar 

  13. Toiber D, Erdel F, Bouazoune K, Silberman DM, Zhong L, Mulligan P et al. SIRT6 recruits SNF2H to DNA break sites, preventing genomic instability through chromatin remodeling. Mol Cell 2013; 51: 454–468.

    Article  CAS  Google Scholar 

  14. Zhong L, D'Urso A, Toiber D, Sebastian C, Henry RE, Vadysirisack DD et al. The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha. Cell 2010; 140: 280–293.

    Article  CAS  Google Scholar 

  15. Sundaresan NR, Vasudevan P, Zhong L, Kim G, Samant S, Parekh V et al. The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun. Nat Med 2012; 18: 1643–1650.

    Article  CAS  Google Scholar 

  16. Kaidi A, Weinert BT, Choudhary C, Jackson SP . Human SIRT6 promotes DNA end resection through CtIP deacetylation. Science 2010; 329: 1348–1353.

    Article  CAS  Google Scholar 

  17. Dominy Jr JE, Lee Y, Jedrychowski MP, Chim H, Jurczak MJ, Camporez JP et al. The deacetylase Sirt6 activates the acetyltransferase GCN5 and suppresses hepatic gluconeogenesis. Mol Cell 2012; 48: 900–913.

    Article  CAS  Google Scholar 

  18. Mao Z, Hine C, Tian X, Van Meter M, Au M, Vaidya A et al. SIRT6 promotes DNA repair under stress by activating PARP1. Science 2011; 332: 1443–1446.

    Article  CAS  Google Scholar 

  19. Jiang H, Khan S, Wang Y, Charron G, He B, Sebastian C et al. SIRT6 regulates TNF-alpha secretion through hydrolysis of long-chain fatty acyl lysine. Nature 2013; 496: 110–113.

    Article  CAS  Google Scholar 

  20. Finkel T, Deng CX, Mostoslavsky R . Recent progress in the biology and physiology of sirtuins. Nature 2009; 460: 587–591.

    Article  CAS  Google Scholar 

  21. Min L, Ji Y, Bakiri L, Qiu Z, Cen J, Chen X et al. Liver cancer initiation is controlled by AP-1 through SIRT6-dependent inhibition of survivin. Nat Cell Biol 2012; 14: 1203–1211.

    Article  CAS  Google Scholar 

  22. Davalos A, Goedeke L, Smibert P, Ramirez CM, Warrier NP, Andreo U et al. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc Natl Acad Sci USA 2011; 108: 9232–9237.

    Article  CAS  Google Scholar 

  23. Lefort K, Brooks Y, Ostano P, Cario-Andre M, Calpini V, Guinea-Viniegra J et al. A miR-34a-SIRT6 axis in the squamous cell differentiation network. EMBO J 2013; 32: 2248–2263.

    Article  CAS  Google Scholar 

  24. Sharma A, Diecke S, Zhang WY, Lan F, He C, Mordwinkin NM et al. The role of SIRT6 protein in aging and reprogramming of human induced pluripotent stem cells. J Biol Chem 2013; 288: 18439–18447.

    Article  CAS  Google Scholar 

  25. Lin Z, Yang H, Tan C, Li J, Liu Z, Quan Q et al. USP10 antagonizes c-Myc transcriptional activation through SIRT6 stabilization to suppress tumor formation. Cell Rep 2013; 5: 1639–1649.

    Article  CAS  Google Scholar 

  26. Geiss-Friedlander R, Melchior F . Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol 2007; 8: 947–956.

    Article  CAS  Google Scholar 

  27. Gareau JR, Lima CD . The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat Rev Mol Cell Biol 2010; 11: 861–871.

    Article  CAS  Google Scholar 

  28. Yeh ET . SUMOylation and De-SUMOylation: wrestling with life's processes. J Biol Chem 2009; 284: 8223–8227.

    Article  CAS  Google Scholar 

  29. Cheng J, Kang X, Zhang S, Yeh ET . SUMO-specific protease 1 is essential for stabilization of HIF1alpha during hypoxia. Cell 2007; 131: 584–595.

    Article  CAS  Google Scholar 

  30. Takasaka N, Araya J, Hara H, Ito S, Kobayashi K, Kurita Y et al. Autophagy induction by SIRT6 through attenuation of insulin-like growth factor signaling is involved in the regulation of human bronchial epithelial cell senescence. J Immunol 2014; 192: 958–968.

    Article  CAS  Google Scholar 

  31. Tasselli L, Chua KF . Cancer: Metabolism in 'the driver's seat. Nature 2012; 492: 362–363.

    Article  CAS  Google Scholar 

  32. Lyssiotis CA, Cantley LC . SIRT6 puts cancer metabolism in the driver's seat. Cell 2012; 151: 1155–1156.

    Article  CAS  Google Scholar 

  33. Kawahara TL, Rapicavoli NA, Wu AR, Qu K, Quake SR, Chang HY . Dynamic chromatin localization of Sirt6 shapes stress- and aging-related transcriptional networks. PLoS Genet 2011; 7: e1002153.

    Article  CAS  Google Scholar 

  34. Zhang ZG, Qin CY . Sirt6 suppresses hepatocellular carcinoma cell growth via inhibiting the extracellular signalregulated kinase signaling pathway. Mol Med Rep 2014; 9: 882–888.

    Article  CAS  Google Scholar 

  35. Etchegaray JP, Zhong L, Mostoslavsky R . The histone deacetylase SIRT6: at the crossroads between epigenetics, metabolism and disease. Curr Top Med Chem 2013; 13: 2991–3000.

    Article  CAS  Google Scholar 

  36. Gertler AA, Cohen HY . SIRT6, a protein with many faces. Biogerontology 2013; 14: 629–639.

    Article  CAS  Google Scholar 

  37. Song J, Durrin LK, Wilkinson TA, Krontiris TG, Chen Y . Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proc Natl Acad Sci USA 2004; 101: 14373–14378.

    Article  CAS  Google Scholar 

  38. Escobar-Cabrera E, Okon M, Lau DK, Dart CF, Bonvin AM, McIntosh LP . Characterizing the N- and C-terminal Small ubiquitin-like modifier (SUMO)-interacting motifs of the scaffold protein DAXX. J Biol Chem 2011; 286: 19816–19829.

    Article  CAS  Google Scholar 

  39. Kolesar P, Sarangi P, Altmannova V, Zhao X, Krejci L . Dual roles of the SUMO-interacting motif in the regulation of Srs2 sumoylation. Nucleic Acids Res 2012; 40: 7831–7843.

    Article  CAS  Google Scholar 

  40. Kang X, Qi Y, Zuo Y, Wang Q, Zou Y, Schwartz RJ et al. SUMO-specific protease 2 is essential for suppression of polycomb group protein-mediated gene silencing during embryonic development. Mol Cell 2010; 38: 191–201.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Chuxia Deng (NIH, Bethesda, MD, USA) for kindly providing for Sirt6−/− MEF cells. This work was supported by National Basic Research Program of China (973 Program; no. 2013CB910902 to JC), National Natural Science Foundation of China (91229202 and 81430069 to JC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J Cheng or J Mu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, J., Zuo, Y., Wang, T. et al. A crucial role of SUMOylation in modulating Sirt6 deacetylation of H3 at lysine 56 and its tumor suppressive activity. Oncogene 35, 4949–4956 (2016). https://doi.org/10.1038/onc.2016.24

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.24

This article is cited by

Search

Quick links