Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

HDAC5 modulates SATB1 transcriptional activity to promote lung adenocarcinoma

Abstract

Background

Dysregulation of histone deacetylases has been linked to diverse cancers. HDAC5 is a histone deacetylase belonging to Class IIa family of histone deacetylases. Limited substrate repertoire restricts the understanding of molecular mechanisms underlying its role in tumorigenesis.

Methods

We employed a biochemical screen to identify SATB1 as HDAC5-interacting protein. Coimmunoprecipitation and deacetylation assay were performed to validate SATB1 as a HDAC5 substrate. Proliferation, migration assay and xenograft studies were performed to determine the effect of HDAC5-SATB1 interaction on tumorigenesis.

Results

Here we report that HDAC5 binds to and deacetylates SATB1 at the conserved lysine 411 residue. Furthermore, dynamic regulation of acetylation at this site is determined by TIP60 acetyltransferase. We also established that HDAC5-mediated deacetylation is critical for SATB1-dependent downregulation of key tumor suppressor genes. Deacetylated SATB1 also represses SDHA-induced epigenetic remodeling and anti-proliferative transcriptional program. Thus, SATB1 spurs malignant phenotype in a HDAC5-dependent manner.

Conclusions

Our study highlights the pivotal role of HDAC5 in tumorigenesis. Our findings provide key insights into molecular mechanisms underlying SATB1 promoted tumor growth and metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SATB1 is a HDAC5-interacting protein.
Fig. 2: SATB1 is a HDAC5 substrate.
Fig. 3: TIP60 acetylates SATB1 at lysine 411 residue.
Fig. 4: HDAC5 determines SATB1-mediated repression of TSGs.
Fig. 5: SDHA-mediated epigenetic reprogramming is inhibited by HDAC5-SATB1 axis.
Fig. 6: HDAC5 augments SATB1 oncogenic potential.
Fig. 7: HDAC5 promotes SATB1 induced aggressive tumor phenotype.

Similar content being viewed by others

Data availability

All study data are included in the manuscript and/or supporting information.

References

  1. Jeon EJ, Lee KY, Choi NS, Lee MH, Kim HN, Jin YH, et al. Bone morphogenetic protein 2 stimulates Runx2 acetylation. J Biol Chem. 2006;281:16502–11.

    Article  CAS  PubMed  Google Scholar 

  2. Ghosh TK, Aparicio-Sanchez JJ, Buxton S, Brook JD. HDAC4 and 5 repression of TBX5 is relieved by protein kinase D1. Sci Rep. 2019;9:17992.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cao C, Vasilatos SN, Bhargava R, Fine JL, Oesterreich S, Davidson NE, et al. Functional interaction of histone deacetylase 5 (HDAC5) and lysine-specific demethylase 1 (LSD1) promotes breast cancer progression. Oncogene. 2017;36:133–45.

    Article  CAS  PubMed  Google Scholar 

  4. Liu C, Lv D, Li M, Zhang X, Sun G, Bai Y, et al. Hypermethylation of miRNA-589 promoter leads to upregulation of HDAC5 which promotes malignancy in non-small cell lung cancer. Int J Oncol. 2017;50:2079–90.

    Article  CAS  PubMed  Google Scholar 

  5. Hou P, Kapoor A, Zhang Q, Li J, Wu CJ, Li J, et al. Tumor microenvironment remodeling enables bypass of oncogenic KRAS dependency in pancreatic cancer. Cancer Discov. 2020;10:1058–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Galande S, Purbey PK, Notani D, Kumar PP. The third dimension of gene regulation: organization of dynamic chromatin loopscape by SATB1. Curr Opin Genet Dev. 2007;17:408–14.

    Article  CAS  PubMed  Google Scholar 

  7. Nakagomi K, Kohwi Y, Dickinson LA, Kohwi-Shigematsu T. A novel DNA-binding motif in the nuclear matrix attachment DNA-binding protein SATB1. Mol Cell Biol. 1994;14:1852–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Yasui D, Miyano M, Cai S, Varga-Weisz P, Kohwi-Shigematsu T. SATB1 targets chromatin remodelling to regulate genes over long distances. Nature. 2002;419:641–5.

    Article  CAS  PubMed  Google Scholar 

  9. Pavan Kumar P, Purbey PK, Sinha CK, Notani D, Limaye A, Jayani RS, et al. Phosphorylation of SATB1, a global gene regulator, acts as a molecular switch regulating its transcriptional activity in vivo. Mol Cell. 2006;22:231–43.

    Article  CAS  PubMed  Google Scholar 

  10. Xue Z, Lv X, Song W, Wang X, Zhao GN, Wang WT, et al. SIRT1 deacetylates SATB1 to facilitate MAR HS2-MAR epsilon interaction and promote epsilon-globin expression. Nucleic Acids Res. 2012;40:4804–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mir R, Pradhan SJ, Patil P, Mulherkar R, Galande S. Wnt/beta-catenin signaling regulated SATB1 promotes colorectal cancer tumorigenesis and progression. Oncogene. 2016;35:1679–91.

    Article  CAS  PubMed  Google Scholar 

  12. Tu W, Luo M, Wang Z, Yan W, Xia Y, Deng H, et al. Upregulation of SATB1 promotes tumor growth and metastasis in liver cancer. Liver Int. 2012;32:1064–78.

    Article  CAS  PubMed  Google Scholar 

  13. Chu SH, Ma YB, Feng DF, Li ZQ, Jiang PC. Correlation between SATB1 and Bcl-2 expression in human glioblastoma multiforme. Mol Med Rep. 2013;7:139–43.

    Article  CAS  PubMed  Google Scholar 

  14. Glatzel-Plucinska N, Piotrowska A, Rzechonek A, Podhorska-Okolow M, Dziegiel P. SATB1 protein is associated with the epithelialmesenchymal transition process in nonsmall cell lung cancers. Oncol Rep. 2021;45:118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sen N, Kumari R, Singh MI, Das S. HDAC5, a key component in temporal regulation of p53-mediated transactivation in response to genotoxic stress. Mo Cell. 2013;52:406–20.

    Article  CAS  Google Scholar 

  16. Xiang J, Zhou L, Zhuang Y, Zhang J, Sun Y, Li S, et al. Lactate dehydrogenase is correlated with clinical stage and grade and is downregulated by siSATauB1 in ovarian cancer. Oncol Rep. 2018;40:2788–97.

    CAS  PubMed  Google Scholar 

  17. Song G, Liu K, Yang X, Mu B, Yang J, He L, et al. SATB1 plays an oncogenic role in esophageal cancer by up-regulation of FN1 and PDGFRB. Oncotarget. 2017;8:17771–84.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Agrelo R, Kishimoto H, Novatchkova M, Peraza V, Paolino M, Souabni A, et al. SATB1 collaborates with loss of p16 in cellular transformation. Oncogene. 2013;32:5492–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kim TY, Jackson S, Xiong Y, Whitsett TG, Lobello JR, Weiss GJ, et al. CRL4A-FBXW5-mediated degradation of DLC1 Rho GTPase-activating protein tumor suppressor promotes non-small cell lung cancer cell growth. Proc Natl Acad Sci USA. 2013;110:16868–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sozzi G, Pastorino U, Moiraghi L, Tagliabue E, Pezzella F, Ghirelli C, et al. Loss of FHIT function in lung cancer and preinvasive bronchial lesions. Cancer Res. 1998;58:5032–7.

    CAS  PubMed  Google Scholar 

  21. Burbee DG, Forgacs E, Zochbauer-Muller S, Shivakumar L, Fong K, Gao B, et al. Epigenetic inactivation of RASSF1A in lung and breast cancers and malignant phenotype suppression. J Natl Cancer Inst. 2001;93:691–9.

    Article  CAS  PubMed  Google Scholar 

  22. Jiang J, Huang D, Jiang Y, Hou J, Tian M, Li J, et al. Lactate modulates cellular metabolism through histone lactylation-mediated gene expression in non-small cell lung cancer. Front Oncol. 2021;11:647559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Su CW, Lin CW, Yang WE, Yang SF. TIMP-3 as a therapeutic target for cancer. Ther Adv Med Oncol. 2019;11:1758835919864247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dalla Pozza E, Dando I, Pacchiana R, Liboi E, Scupoli MT, Donadelli M, et al. Regulation of succinate dehydrogenase and role of succinate in cancer. Semin Cell Dev Biol. 2020;98:4–14.

    Article  CAS  PubMed  Google Scholar 

  25. Merlo A, Herman JG, Mao L, Lee DJ, Gabrielson E, Burger PC, et al. 5' CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat Med. 1995;1:686–92.

    Article  CAS  PubMed  Google Scholar 

  26. Wang G, Hu X, Lu C, Su C, Luo S, Luo ZW. Promoter-hypermethylation associated defective expression of E-cadherin in primary non-small cell lung cancer. Lung Cancer. 2008;62:162–72.

    Article  PubMed  Google Scholar 

  27. Lo Sardo F, Pulito C, Sacconi A, Korita E, Sudol M, Strano S, et al. YAP/TAZ and EZH2 synergize to impair tumor suppressor activity of TGFBR2 in non-small cell lung cancer. Cancer Lett. 2021;500:51–63.

    Article  CAS  PubMed  Google Scholar 

  28. Xue Y, Lian W, Zhi J, Yang W, Li Q, Guo X, et al. HDAC5-mediated deacetylation and nuclear localisation of SOX9 is critical for tamoxifen resistance in breast cancer. Br J Cancer. 2019;121:1039–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhou Y, Jin X, Yu H, Qin G, Pan P, Zhao J, et al. HDAC5 modulates PD-L1 expression and cancer immunity via p65 deacetylation in pancreatic cancer. Theranostics. 2022;12:2080–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang X, Wu J, Luan Y. Tip60: main functions and its inhibitors. Mini Rev Med Chem. 2017;17:675–82.

    Article  CAS  PubMed  Google Scholar 

  31. Legube G, Linares LK, Lemercier C, Scheffner M, Khochbin S, Trouche D. Tip60 is targeted to proteasome-mediated degradation by Mdm2 and accumulates after UV irradiation. EMBO J. 2002;21:1704–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sun Y, Jiang X, Chen S, Fernandes N, Price BD. A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. Proc Natl Acad Sci USA. 2005;102:13182–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang J, He H, Chen B, Jiang G, Cao L, Jiang H, et al. Acetylation of XPF by TIP60 facilitates XPF-ERCC1 complex assembly and activation. Nat Commun. 2020;11:786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jiang Z, Kamath R, Jin S, Balasubramani M, Pandita TK, Rajasekaran B. Tip60-mediated acetylation activates transcription independent apoptotic activity of Abl. Mol Cancer. 2011;10:88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gorrini C, Squatrito M, Luise C, Syed N, Perna D, Wark L, et al. Tip60 is a haplo-insufficient tumour suppressor required for an oncogene-induced DNA damage response. Nature. 2007;448:1063–7.

    Article  CAS  PubMed  Google Scholar 

  36. Rajagopalan D, Pandey AK, Xiuzhen MC, Lee KK, Hora S, Zhang Y, et al. TIP60 represses telomerase expression by inhibiting Sp1 binding to the TERT promoter. PLoS Pathogens. 2017;13:e1006681.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Rasheed M, Tarjan G. Succinate dehydrogenase complex: an updated review. Arch Pathol Lab Med. 2018;142:1564–70.

    Article  PubMed  Google Scholar 

  38. Xiao M, Yang H, Xu W, Ma S, Lin H, Zhu H, et al. Inhibition of alpha-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev. 2012;26:1326–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Letouze E, Martinelli C, Loriot C, Burnichon N, Abermil N, Ottolenghi C, et al. SDH mutations establish a hypermethylator phenotype in paraganglioma. Cancer Cell. 2013;23:739–52.

    Article  CAS  PubMed  Google Scholar 

  40. Hoekstra AS, de Graaff MA, Briaire-de Bruijn IH, Ras C, Seifar RM, van Minderhout I, et al. Inactivation of SDH and FH cause loss of 5hmC and increased H3K9me3 in paraganglioma/pheochromocytoma and smooth muscle tumors. Oncotarget. 2015;6:38777–88.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Piantadosi CA, Suliman HB. Transcriptional regulation of SDHa flavoprotein by nuclear respiratory factor-1 prevents pseudo-hypoxia in aerobic cardiac cells. J Biol Chem. 2008;283:10967–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Han HJ, Russo J, Kohwi Y, Kohwi-Shigematsu T. SATB1 reprogrammes gene expression to promote breast tumour growth and metastasis. Nature. 2008;452:187–93.

    Article  CAS  PubMed  Google Scholar 

  43. Satija YK, Das S. Tyr99 phosphorylation determines the regulatory milieu of tumor suppressor p73. Oncogene. 2016;35:513–27.

    Article  CAS  PubMed  Google Scholar 

  44. He TC, Zhou S, da Costa LT, Yu J, Kinzler KW, Vogelstein B. A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci USA. 1998;95:2509–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Deshmukh RS, Sharma S, Das S. Cyclin F-dependent degradation of RBPJ inhibits IDH1(R132H)-mediated tumorigenesis. Cancer Res. 2018;78:6386–98.

    Article  CAS  PubMed  Google Scholar 

  46. Groisman R, Polanowska J, Kuraoka I, Sawada J, Saijo M, Drapkin R, et al. The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell. 2003;113:357–67.

    Article  CAS  PubMed  Google Scholar 

  47. Lee JV, Carrer A, Shah S, Snyder NW, Wei S, Venneti S, et al. Akt-dependent metabolic reprogramming regulates tumor cell histone acetylation. Cell Metab. 2014;20:306–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Savell KE, Gallus NV, Simon RC, Brown JA, Revanna JS, Osborn MK, et al. Extra-coding RNAs regulate neuronal DNA methylation dynamics. Nat Commun. 2016;7:12091.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the members of the Molecular Oncology Laboratory for helpful discussions. SS was supported by a fellowship from the Department of Biotechnology, Government of India. WT was supported by a fellowship from Department of Science & Technology, Government of India and RT was supported by a fellowship from Council of Scientific & Industrial Research (CSIR), Government of India. This work was supported by a grant from Science and Engineering Research Board, Government of India (CRG/2021/000603/IBS) to SD.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

SS and SD conceived the initial project. SS, WT, and SD conceptualised the study and designed the experiments. SS, WT, and SD developed the methodology. SS, WT and RT performed all the experiments. SS, WT, RT and SD analysed the data. SS, WT, and SD wrote the manuscript. All authors approved the final version of the article, including the authorship list.

Corresponding author

Correspondence to Sanjeev Das.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Tyagi, W., Tamang, R. et al. HDAC5 modulates SATB1 transcriptional activity to promote lung adenocarcinoma. Br J Cancer 129, 586–600 (2023). https://doi.org/10.1038/s41416-023-02341-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-023-02341-8

Search

Quick links