Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

HGF/Met and FOXM1 form a positive feedback loop and render pancreatic cancer cells resistance to Met inhibition and aggressive phenotypes

Abstract

Hepatocyte growth factor (HGF)/Met signaling has critical roles in pancreatic ductal adenocarcinoma (PDA) development and progression and is considered a potential therapeutic target for this disease. However, the mechanism of aberrant activation of HGF/Met signaling and resistance to Met inhibition in PDA remains unclear. The mechanistic role of cross talk between Forkhead box M1 (FOXM1) and HGF/Met signaling in promotion of PDA growth and resistance to Met inhibition was examined using cell culture, molecular biology and mouse models; and the relevance of our experimental and mechanistic findings were validated using human PDA tissues. Met was markedly overexpressed in both PDA cell lines and pancreatic tumor specimens, and the expression of Met correlated directly with that of FOXM1 in human tumor specimens. Mechanistically, FOXM1 bound to the promoter region of the Met gene and transcriptionally increased the expression of Met. Increased expression of FOXM1 enhanced the activation of HGF/Met signaling and its downstream pathways, including retrovirus-associated DNA sequences/extracellular signal-regulated kinase 1/2, phosphoinositide 3-kinase/AKT and signal transducer and activator of transcription 3. Furthermore, activation of HGF/Met signaling increased the expression and transcriptional activity of FOXM1, and the cross talk between FOXM1 and HGF/Met signaling promoted PDA growth and resistance to Met inhibition. Collectively, our findings identified a positive feedback loop formed by FOXM1 and HGF/Met and revealed that this loop is a potentially effective therapeutic target for PDA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D . Global cancer statistics. CA Cancer J Clin 2011; 61: 69–90.

    PubMed  Google Scholar 

  2. Siegel R, Ma J, Zou Z, Jemal A . Cancer statistics, 2014. CA Cancer J Clin 2014; 64: 9–29.

    PubMed  Google Scholar 

  3. Hidalgo M . Pancreatic cancer. N Engl J Med 2010; 362: 1605–1617.

    Article  CAS  PubMed  Google Scholar 

  4. Birchmeier C, Gherardi E . Developmental roles of HGF/SF and its receptor, the c-Met tyrosine kinase. Trends Cell Biol 1998; 8: 404–410.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang YW, Vande Woude GF . HGF/SF-met signaling in the control of branching morphogenesis and invasion. J Cell Biochem 2003; 88: 408–417.

    Article  CAS  PubMed  Google Scholar 

  6. Cui JJ . Targeting receptor tyrosine kinase MET in cancer: small molecule inhibitors and clinical progress. J Med Chem 2014; 57: 4427–4453.

    Article  CAS  PubMed  Google Scholar 

  7. De Bacco F, Luraghi P, Medico E, Reato G, Girolami F, Perera T et al. Induction of MET by ionizing radiation and its role in radioresistance and invasive growth of cancer. J Natl Cancer Inst 2011; 103: 645–661.

    Article  CAS  PubMed  Google Scholar 

  8. Neesse A, Michl P, Frese KK, Feig C, Cook N, Jacobetz MA et al. Stromal biology and therapy in pancreatic cancer. Gut 2011; 60: 861–868.

    Article  PubMed  Google Scholar 

  9. Logan-Collins J, Thomas RM, Yu P, Jaquish D, Mose E, French R et al. Silencing of RON receptor signaling promotes apoptosis and gemcitabine sensitivity in pancreatic cancers. Cancer Res 2010; 70: 1130–1140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhu GH, Huang C, Qiu ZJ, Liu J, Zhang ZH, Zhao N et al. Expression and prognostic significance of CD151, c-Met, and integrin alpha3/alpha6 in pancreatic ductal adenocarcinoma. Dig Dis Sci 2011; 56: 1090–1098.

    Article  CAS  PubMed  Google Scholar 

  11. Kitajima Y, Ide T, Ohtsuka T, Miyazaki K . Induction of hepatocyte growth factor activator gene expression under hypoxia activates the hepatocyte growth factor/c-Met system via hypoxia inducible factor-1 in pancreatic cancer. Cancer Sci 2008; 99: 1341–1347.

    Article  CAS  PubMed  Google Scholar 

  12. Ketterer K, Kong B, Frank D, Giese NA, Bauer A, Hoheisel J et al. Neuromedin U is overexpressed in pancreatic cancer and increases invasiveness via the hepatocyte growth factor c-Met pathway. Cancer Lett 2009; 277: 72–81.

    Article  CAS  PubMed  Google Scholar 

  13. Otte JM, Kiehne K, Schmitz F, Folsch UR, Herzig KH . C-met protooncogene expression and its regulation by cytokines in the regenerating pancreas and in pancreatic cancer cells. Scand J Gastroenterol 2000; 35: 90–95.

    Article  CAS  PubMed  Google Scholar 

  14. Clark KL, Halay ED, Lai E, Burley SK . Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5. Nature 1993; 364: 412–420.

    Article  CAS  PubMed  Google Scholar 

  15. Huang C, Du J, Xie K . FOXM1 and its oncogenic signaling in pancreatic cancer pathogenesis. Biochim Biophys Acta 2014; 1845: 104–116.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Huang C, Qiu Z, Wang L, Peng Z, Jia Z, Logsdon CD et al. A novel FoxM1-caveolin signaling pathway promotes pancreatic cancer invasion and metastasis. Cancer Res 2012; 72: 655–665.

    Article  CAS  PubMed  Google Scholar 

  17. Bao B, Wang Z, Ali S, Kong D, Banerjee S, Ahmad A et al. Over-expression of FoxM1 leads to epithelial-mesenchymal transition and cancer stem cell phenotype in pancreatic cancer cells. J Cell Biochem 2011; 112: 2296–2306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cui J, Shi M, Xie D, Wei D, Jia Z, Zheng S et al. FOXM1 promotes the warburg effect and pancreatic cancer progression via transactivation of LDHA expression. Clin Cancer Res 2014; 20: 2595–2606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhao S, Cao L, Freeman JW . Knockdown of RON receptor kinase delays but does not prevent tumor progression while enhancing HGF/MET signaling in pancreatic cancer cell lines. Oncogenesis 2013; 2: e76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sanders DA, Gormally MV, Marsico G, Beraldi D, Tannahill D, Balasubramanian S . FOXM1 binds directly to non-consensus sequences in the human genome. Genome Biol 2015; 16: 130.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhang Y, Zhang N, Dai B, Liu M, Sawaya R, Xie K et al. FoxM1B transcriptionally regulates vascular endothelial growth factor expression and promotes the angiogenesis and growth of glioma cells. Cancer Res 2008; 68: 8733–8742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wierstra I, Alves J . Despite its strong transactivation domain, transcription factor FOXM1c is kept almost inactive by two different inhibitory domains. Biol Chem 2006; 387: 963–976.

    CAS  PubMed  Google Scholar 

  23. Dai B, Kang SH, Gong W, Liu M, Aldape KD, Sawaya R et al. Aberrant FoxM1B expression increases matrix metalloproteinase-2 transcription and enhances the invasion of glioma cells. Oncogene 2007; 26: 6212–6219.

    Article  CAS  PubMed  Google Scholar 

  24. Lam AK, Ngan AW, Leung MH, Kwok DC, Liu VW, Chan DW et al. FOXM1b, which is present at elevated levels in cancer cells, has a greater transforming potential than FOXM1c. Front Oncol 2013; 3: 11.

    PubMed  PubMed Central  Google Scholar 

  25. Wang H, Teh MT, Ji Y, Patel V, Firouzabadian S, Patel AA et al. EPS8 upregulates FOXM1 expression, enhancing cell growth and motility. Carcinogenesis 2010; 31: 1132–1141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mencalha AL, Binato R, Ferreira GM, Du Rocher B, Abdelhay E . Forkhead box M1 (FoxM1) gene is a new STAT3 transcriptional factor target and is essential for proliferation, survival and DNA repair of K562 cell line. PLoS One 2012; 7: e48160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Christensen JG, Schreck R, Burrows J, Kuruganti P, Chan E, Le P et al. A selective small molecule inhibitor of c-Met kinase inhibits c-Met-dependent phenotypes in vitro and exhibits cytoreductive antitumor activity in vivo. Cancer Res 2003; 63: 7345–7355.

    CAS  PubMed  Google Scholar 

  28. Chiu WT, Huang YF, Tsai HY, Chen CC, Chang CH, Huang SC et al. FOXM1 confers to epithelial-mesenchymal transition, stemness and chemoresistance in epithelial ovarian carcinoma cells. Oncotarget 2015; 6: 2349–2365.

    PubMed  Google Scholar 

  29. Avan A, Maftouh M, Funel N, Ghayour-Mobarhan M, Boggi U, Peters GJ et al. MET as a potential target for the treatment of upper gastrointestinal cancers: characterization of novel c-Met inhibitors from bench to bedside. Curr Med Chem 2014; 21: 975–989.

    Article  CAS  PubMed  Google Scholar 

  30. Wierstra I, Alves J . FOXM1, a typical proliferation-associated transcription factor. Biol Chem 2007; 388: 1257–1274.

    CAS  PubMed  Google Scholar 

  31. Wang Z, Ahmad A, Li Y, Banerjee S, Kong D, Sarkar FH . Forkhead box M1 transcription factor: a novel target for cancer therapy. Cancer Treat Rev 2010; 36: 151–156.

    Article  CAS  PubMed  Google Scholar 

  32. Qi J, McTigue MA, Rogers A, Lifshits E, Christensen JG, Janne PA et al. Multiple mutations and bypass mechanisms can contribute to development of acquired resistance to MET inhibitors. Cancer Res 2011; 71: 1081–1091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sunaga N, Kaira K, Imai H, Shimizu K, Nakano T, Shames DS et al. Oncogenic KRAS-induced epiregulin overexpression contributes to aggressive phenotype and is a promising therapeutic target in non-small-cell lung cancer. Oncogene 2013; 32: 4034–4042.

    Article  CAS  PubMed  Google Scholar 

  34. Altomare DA, Zhang L, Deng J, Di Cristofano A, Klein-Szanto AJ, Kumar R et al. GSK690693 delays tumor onset and progression in genetically defined mouse models expressing activated Akt. Clin Cancer Res 2010; 16: 486–496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sen N, Che X, Rajamani J, Zerboni L, Sung P, Ptacek J et al. Signal transducer and activator of transcription 3 (STAT3) and survivin induction by varicella-zoster virus promote replication and skin pathogenesis. Proc Natl Acad Sci USA 2012; 109: 600–605.

    Article  CAS  PubMed  Google Scholar 

  36. Li L, Li Z, Kong X, Xie D, Jia Z, Jiang W et al. Down-regulation of microRNA-494 via loss of SMAD4 increases FOXM1 and β-catenin signaling in pancreatic ductal adenocarcinoma cells. Gastroenterology 2014; 147: 485–497.

    Article  CAS  PubMed  Google Scholar 

  37. Liu M, Dai B, Kang SH, Ban K, Huang FJ, Lang FF et al. FoxM1B is overexpressed in human glioblastomas and critically regulates the tumorigenicity of glioma cells. Cancer Res 2006; 66: 3593–3602.

    Article  CAS  PubMed  Google Scholar 

  38. Hu B, Guo P, Bar-Joseph I, Imanishi Y, Jarzynka MJ, Bogler O et al. Neuropilin-1 promotes human glioma progression through potentiating the activity of the HGF/SF autocrine pathway. Oncogene 2007; 26: 5577–5586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yeh CY, Shin SM, Yeh HH, Wu TJ, Shin JW, Chang TY et al. Transcriptional activation of the Axl and PDGFR-alpha by c-Met through a ras- and Src-independent mechanism in human bladder cancer. BMC Cancer 2011; 11: 139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cui J, Shi M, Xie D, Wei D, Jia Z, Zheng S et al. FOXM1 Promotes the Warburg Effect and Pancreatic Cancer Progression via Transactivation of LDHA Expression. Clin Cancer Res 2014; 20: 2595–2606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xue J, Lin X, Chiu WT, Chen YH, Yu G, Liu M et al. Sustained activation of SMAD3/SMAD4 by FOXM1 promotes TGF-beta-dependent cancer metastasis. J Clin Invest 2014; 124: 564–579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang N, Wei P, Gong A, Chiu WT, Lee HT, Colman H et al. FoxM1 promotes β-catenin nuclear localization and controls Wnt target-gene expression and glioma tumorigenesis. Cancer Cell 2011; 20: 427–442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Don Norwood for editorial assistance and Xuemei Wang, Associate Director of Quantitative Research at The University of Texas MD Anderson Cancer Center, for assistance with statistical analyses. This work was supported by grants R01-CA129956, R01-CA148954, R01CA152309, and R01CA172233 from the National Cancer Institute, National Institutes of Health (to K Xie).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M Quan or K Xie.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, J., Xia, T., Xie, D. et al. HGF/Met and FOXM1 form a positive feedback loop and render pancreatic cancer cells resistance to Met inhibition and aggressive phenotypes. Oncogene 35, 4708–4718 (2016). https://doi.org/10.1038/onc.2016.14

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.14

This article is cited by

Search

Quick links