Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cytosolic PKM2 stabilizes mutant EGFR protein expression through regulating HSP90–EGFR association

A Corrigendum to this article was published on 20 March 2017

Abstract

Secondary mutation of epidermal growth factor receptor (EGFR) resulting in drug resistance is one of the most critical issues in lung cancer therapy. Several drugs are being developed to overcome EGFR tyrosine kinase inhibitor (TKI) resistance. Here, we report that pyruvate kinase M2 (PKM2) stabilized mutant EGFR protein by direct interaction and sustained cell survival signaling in lung cancer cells. PKM2 silencing resulted in markedly reduced mutant EGFR expression in TKI-sensitive or -resistant human lung cancer cells, and in inhibition of tumor growth in their xenografts, concomitant with downregulation of EGFR-related signaling. Mechanistically, PKM2 directly interacted with mutant EGFR and heat-shock protein 90 (HSP90), and thus stabilized EGFR by maintaining its binding with HSP90 and co-chaperones. Stabilization of EGFR relied on dimeric PKM2, and the protein half-life of mutant EGFR decreased when PKM2 was forced into its tetramer form. Clinical levels of PKM2 positively correlated with mutant EGFR expression and with patient outcome. These results reveal a previously undescribed non-glycolysis function of PKM2 in the cytoplasm, which contribute to EGFR-dependent tumorigenesis and provide a novel strategy to overcome drug resistance to EGFR TKIs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004; 350: 2129–2139.

    Article  CAS  Google Scholar 

  2. Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 2004; 304: 1497–1500.

    Article  CAS  Google Scholar 

  3. Pao W, Miller V, Zakowski M, Doherty J, Politi K, Sarkaria I et al. EGF receptor gene mutations are common in lung cancers from "never smokers" and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci USA 2004; 101: 13306–13311.

    Article  CAS  Google Scholar 

  4. Hynes NE, Lane HA . ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 2005; 5: 341–354.

    Article  CAS  Google Scholar 

  5. Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 2009; 361: 947–957.

    Article  CAS  Google Scholar 

  6. Rosell R, Moran T, Queralt C, Porta R, Cardenal F, Camps C et al. Screening for epidermal growth factor receptor mutations in lung cancer. N Engl J Med 2009; 361: 958–967.

    Article  CAS  Google Scholar 

  7. Arcila ME, Oxnard GR, Nafa K, Riely GJ, Solomon SB, Zakowski MF et al. Rebiopsy of lung cancer patients with acquired resistance to EGFR inhibitors and enhanced detection of the T790M mutation using a locked nucleic acid-based assay. Clin Cancer Res 2011; 17: 1169–1180.

    Article  CAS  Google Scholar 

  8. Pao W, Miller VA, Politi KA, Riely GJ, Somwar R, Zakowski MF et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2005; 2: e73.

    Article  Google Scholar 

  9. Kobayashi S, Boggon TJ, Dayaram T, Janne PA, Kocher O, Meyerson M et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med 2005; 352: 786–792.

    Article  CAS  Google Scholar 

  10. Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 2008; 452: 230–233.

    Article  CAS  Google Scholar 

  11. Christofk HR, Vander Heiden MG, Wu N, Asara JM, Cantley LC . Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 2008; 452: 181–186.

    Article  CAS  Google Scholar 

  12. Chaneton B, Hillmann P, Zheng L, Martin AC, Maddocks OD, Chokkathukalam A et al. Serine is a natural ligand and allosteric activator of pyruvate kinase M2. Nature 2012; 491: 458–462.

    Article  CAS  Google Scholar 

  13. Parnell KM, Foulks JM, Nix RN, Clifford A, Bullough J, Luo B et al. Pharmacologic activation of PKM2 slows lung tumor xenograft growth. Mol Cancer Ther 2013; 12: 1453–1460.

    Article  CAS  Google Scholar 

  14. Anastasiou D, Yu Y, Israelsen WJ, Jiang JK, Boxer MB, Hong BS et al. Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis. Nat Chem Biol 2012; 8: 839–847.

    Article  CAS  Google Scholar 

  15. Gao X, Wang H, Yang JJ, Liu X, Liu ZR . Pyruvate kinase M2 regulates gene transcription by acting as a protein kinase. Mol Cell 2012; 45: 598–609.

    Article  CAS  Google Scholar 

  16. Lv L, Xu YP, Zhao D, Li FL, Wang W, Sasaki N et al. Mitogenic and oncogenic stimulation of K433 acetylation promotes PKM2 protein kinase activity and nuclear localization. Mol Cell 2013; 52: 1–13.

    Article  Google Scholar 

  17. Yang W, Xia Y, Ji H, Zheng Y, Liang J, Huang W et al. Nuclear PKM2 regulates beta-catenin transactivation upon EGFR activation. Nature 2011; 480: 118–122.

    Article  CAS  Google Scholar 

  18. Yang W, Xia Y, Hawke D, Li X, Liang J, Xing D et al. PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell 2012; 150: 685–696.

    Article  CAS  Google Scholar 

  19. Yang W, Zheng Y, Xia Y, Ji H, Chen X, Guo F et al. ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat Cell Biol 2012; 14: 1295–1304.

    Article  CAS  Google Scholar 

  20. Pao W, Chmielecki J . Rational, biologically based treatment of EGFR-mutant non-small-cell lung cancer. Nat Rev Cancer 2010; 10: 760–774.

    Article  CAS  Google Scholar 

  21. Vollmer SH, Walner MB, Tarbell KV, Colman RF . Guanosine 5'-O-[S-(4-bromo-2,3-dioxobutyl)]thiophosphate and adenosine 5'-O-[S-(4-bromo-2,3-dioxobutyl)]thiophosphate. New nucleotide affinity labels which react with rabbit muscle pyruvate kinase. J Biol Chem 1994; 269: 8082–8090.

    CAS  PubMed  Google Scholar 

  22. Le Mellay V, Houben R, Troppmair J, Hagemann C, Mazurek S, Frey U et al. Regulation of glycolysis by Raf protein serine/threonine kinases. Adv Enzyme Regul 2002; 42: 317–332.

    Article  CAS  Google Scholar 

  23. Chung BM, Dimri M, George M, Reddi AL, Chen G, Band V et al. The role of cooperativity with Src in oncogenic transformation mediated by non-small cell lung cancer-associated EGF receptor mutants. Oncogene 2009; 28: 1821–1832.

    Article  CAS  Google Scholar 

  24. Wang P, Sun C, Zhu T, Xu Y . Structural insight into mechanisms for dynamic regulation of PKM2. Protein Cell 2015; 6: 275–287.

    Article  CAS  Google Scholar 

  25. Shimamura T, Lowell AM, Engelman JA, Shapiro GI . Epidermal growth factor receptors harboring kinase domain mutations associate with the heat shock protein 90 chaperone and are destabilized following exposure to geldanamycins. Cancer Res 2005; 65: 6401–6408.

    Article  CAS  Google Scholar 

  26. Yang S, Qu S, Perez-Tores M, Sawai A, Rosen N, Solit DB et al. Association with HSP90 inhibits Cbl-mediated down-regulation of mutant epidermal growth factor receptors. Cancer Res 2006; 66: 6990–6997.

    Article  CAS  Google Scholar 

  27. Taipale M, Jarosz DF, Lindquist S . HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol 2010; 11: 515–528.

    Article  CAS  Google Scholar 

  28. Ciardiello F, Tortora G . EGFR antagonists in cancer treatment. N Engl J Med 2008; 358: 1160–1174.

    Article  CAS  Google Scholar 

  29. Nyati MK, Morgan MA, Feng FY, Lawrence TS . Integration of EGFR inhibitors with radiochemotherapy. Nat Rev Cancer 2006; 6: 876–885.

    Article  CAS  Google Scholar 

  30. Kobayashi S, Shimamura T, Monti S, Steidl U, Hetherington CJ, Lowell AM et al. Transcriptional profiling identifies cyclin D1 as a critical downstream effector of mutant epidermal growth factor receptor signaling. Cancer Res 2006; 66: 11389–11398.

    Article  CAS  Google Scholar 

  31. Chou YT, Lin HH, Lien YC, Wang YH, Hong CF, Kao YR et al. EGFR promotes lung tumorigenesis by activating miR-7 through a Ras/ERK/Myc pathway that targets the Ets2 transcriptional repressor ERF. Cancer Res 2010; 70: 8822–8831.

    Article  CAS  Google Scholar 

  32. Lim JY, Yoon SO, Seol SY, Hong SW, Kim JW, Choi SH et al. Overexpression of the M2 isoform of pyruvate kinase is an adverse prognostic factor for signet ring cell gastric cancer. World J Gastroenterol 2012; 18: 4037–4043.

    Article  CAS  Google Scholar 

  33. Li J, Yang Z, Zou Q, Yuan Y, Li J, Liang L et al. PKM2 and ACVR 1C are prognostic markers for poor prognosis of gallbladder cancer. Clin Transl Oncol 2014; 16: 200–207.

    Article  Google Scholar 

  34. Warburg O . On the origin of cancer cells. Science 1956; 123: 309–314.

    Article  CAS  Google Scholar 

  35. Jiang Y, Li X, Yang W, Hawke DH, Zheng Y, Xia Y et al. PKM2 regulates chromosome segregation and mitosis progression of tumor cells. Mol Cell 2014; 53: 75–87.

    Article  CAS  Google Scholar 

  36. Keller KE, Doctor ZM, Dwyer ZW, Lee YS . SAICAR induces protein kinase activity of PKM2 that is necessary for sustained proliferative signaling of cancer cells. Mol Cell 2014; 53: 700–709.

    Article  CAS  Google Scholar 

  37. Israelsen WJ, Dayton TL, Davidson SM, Fiske BP, Hosios AM, Bellinger G et al. PKM2 isoform-specific deletion reveals a differential requirement for pyruvate kinase in tumor cells. Cell 2013; 155: 397–409.

    Article  CAS  Google Scholar 

  38. Cortes-Cros M, Hemmerlin C, Ferretti S, Zhang J, Gounarides JS, Yin H et al. M2 isoform of pyruvate kinase is dispensable for tumor maintenance and growth. Proc Natl Acad Sci USA 2013; 110: 489–494.

    Article  CAS  Google Scholar 

  39. Hitosugi T, Kang S, Vander Heiden MG, Chung TW, Elf S, Lythgoe K et al. Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth. Sci Signal 2009; 2: ra73.

    Article  Google Scholar 

  40. Luo W, Hu H, Chang R, Zhong J, Knabel M, O'Meally R et al. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell 2011; 145: 732–744.

    Article  CAS  Google Scholar 

  41. Yang W, Xia Y, Cao Y, Zheng Y, Bu W, Zhang L et al. EGFR-induced and PKCepsilon monoubiquitylation-dependent NF-kappaB activation upregulates PKM2 expression and promotes tumorigenesis. Mol Cell 2012; 48: 771–784.

    Article  CAS  Google Scholar 

  42. Walter AO, Sjin RT, Haringsma HJ, Ohashi K, Sun J, Lee K et al. Discovery of a mutant-selective covalent inhibitor of EGFR that overcomes T790M-mediated resistance in NSCLC. Cancer Discov 2013; 3: 1404–1415.

    Article  CAS  Google Scholar 

  43. Yang JC, Hirsh V, Schuler M, Yamamoto N, O'Byrne KJ, Mok TS et al. Symptom control and quality of life in LUX-Lung 3: a phase III study of afatinib or cisplatin/pemetrexed in patients with advanced lung adenocarcinoma with EGFR mutations. J Clin Oncol 2013; 31: 3342–3350.

    Article  CAS  Google Scholar 

  44. Cross DA, Ashton SE, Ghiorghiu S, Eberlein C, Nebhan CA, Spitzler PJ et al. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov 2014; 4: 1046–1061.

    Article  CAS  Google Scholar 

  45. Haspinger ER, Garassino MC, Torri V, Cinquini M, De Braud F, Gelsomino F . Do we really need another epidermal growth factor receptor tyrosine kinase inhibitor in first-line treatment for patients with non-small-cell lung cancer and EGFR mutations? J Clin Oncol 2014; 32: 859–863.

    Article  CAS  Google Scholar 

  46. Pirazzoli V, Nebhan C, Song X, Wurtz A, Walther Z, Cai G et al. Acquired resistance of EGFR-mutant lung adenocarcinomas to afatinib plus cetuximab is associated with activation of mTORC1. Cell Rep 2014; 7: 999–1008.

    Article  CAS  Google Scholar 

  47. Kobayashi N, Toyooka S, Soh J, Yamamoto H, Dote H, Kawasaki K et al. The anti-proliferative effect of heat shock protein 90 inhibitor, 17-DMAG, on non-small-cell lung cancers being resistant to EGFR tyrosine kinase inhibitor. Lung Cancer 2012; 75: 161–166.

    Article  Google Scholar 

  48. Chiosis G, Dickey CA, Johnson JL . A global view of Hsp90 functions. Nat Struct Mol Biol 2013; 20: 1–4.

    Article  CAS  Google Scholar 

  49. Solit DB, Ivy SP, Kopil C, Sikorski R, Morris MJ, Slovin SF et al. Phase I trial of 17-allylamino-17-demethoxygeldanamycin in patients with advanced cancer. Clin Cancer Res 2007; 13: 1775–1782.

    Article  CAS  Google Scholar 

  50. Yuan S, Yu SL, Chen HY, Hsu YC, Su KY, Chen HW et al. Clustered genomic alterations in chromosome 7p dictate outcomes and targeted treatment responses of lung adenocarcinoma with EGFR-activating mutations. J Clin Oncol 2011; 29: 3435–3442.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Zhimin Lu for the Flag-tagged K367M, K433E and wild-type PKM2, Dr Zhi-Ren Liu for HA-tagged R399E and wild-type PKM2, Dr Mien-Chie Hung for myc-tagged EGFR-ECM and -ICM, Dr Ann-Lii Cheng and Dr James Chih-Hsin Yang for helpful discussion, Integrated Core Facility for Functional Genomics of the National Core Facility Program for Biotechnology, the Microarray Core Facility of the National Taiwan University Center of Genomic Medicine and Dr Sung-Liang Yu for technical support. This study was supported by grants from National Science Council, Taiwan (NSC 104-2321-B-002-006, NSC-104-2911-I-002-302 and NSC 104-2923-B-002-003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K-T Hua or M-L Kuo.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, YC., Cheng, TY., Huang, SM. et al. Cytosolic PKM2 stabilizes mutant EGFR protein expression through regulating HSP90–EGFR association. Oncogene 35, 3387–3398 (2016). https://doi.org/10.1038/onc.2015.397

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.397

Search

Quick links