Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ALK fusion promotes metabolic reprogramming of cancer cells by transcriptionally upregulating PFKFB3

Abstract

Anaplastic lymphoma kinase (ALK), a receptor tyrosine kinase of the insulin receptor kinase subfamily, is activated in multiple cancer types through translocation or overexpression. Although several generations of ALK tyrosine kinase inhibitors (TKIs) have been developed for clinic use, drug resistance remains a major challenge. In this study, by quantitative proteomic approach, we identified the glycolytic regulatory enzyme, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), as a new target of ALK. Expression of PFKFB3 is highly dependent on ALK activity in ALK+ anaplastic large cell lymphoma and non-small-cell lung cancer (NSCLC) cells. Notably, ALK and PFKFB3 expressions exhibit significant correlation in clinic ALK+ NSCLC samples. We further demonstrated that ALK promotes PFKFB3 transcription through the downstream transcription factor STAT3. Upregulation of PFKFB3 by ALK is important for high glycolysis level as well as oncogenic activity of ALK+ lymphoma cells. Finally, targeting PFKFB3 by its inhibitor can overcome drug resistance in cells bearing TKI-resistant mutants of ALK. Collectively, our studies reveal a novel ALK–STAT3–PFKFB3 axis to promote cell proliferation and tumorigenesis, providing an alternative strategy for the treatment of ALK-positive tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ALK-dependent upregulation of PFKFB3 in ALK+ cancer cells.
Fig. 2: PFKFB3 deficiency impaired glycolysis in ALK+ cancer cells.
Fig. 3: PFKFB3 is required for the oncogenic activity of ALK+ cancer cells.
Fig. 4: ALK promotes transcriptional expression of PFKFB3.
Fig. 5: ALK promotes PFKFB3 transcription through STAT3.
Fig. 6: ALK upregulates PFKFB3 to maintain glycolysis level in cancer cells.
Fig. 7: Ceritinib-resistant NPM::ALK mutants are sensitive to PFKFB3 inhibitor.

Similar content being viewed by others

References

  1. Olsen TK, Panagopoulos I, Meling TR, Micci F, Gorunova L, Thorsen J, et al. Fusion genes with ALK as recurrent partner in ependymoma-like gliomas: a new brain tumor entity? Neuro Oncol. 2015;17:1365–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Touriol C, Greenland C, Lamant L, Pulford K, Bernard F, Rousset T, et al. Further demonstration of the diversity of chromosomal changes involving 2p23 in ALK-positive lymphoma: 2 cases expressing ALK kinase fused to CLTCL (clathrin chain polypeptide-like). Blood 2000;95:3204–7.

    Article  CAS  PubMed  Google Scholar 

  3. Hallberg B, Palmer RH. Mechanistic insight into ALK receptor tyrosine kinase in human cancer biology. Nat Rev Cancer. 2013;13:685–700.

    Article  CAS  PubMed  Google Scholar 

  4. Morris SW, Kirstein MN, Valentine MB, Dittmer K, Shapiro DN, Look AT, et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science 1995;267:316–7.

    Article  CAS  PubMed  Google Scholar 

  5. Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 2007;448:561–6.

    Article  CAS  PubMed  Google Scholar 

  6. Rikova K, Guo A, Zeng Q, Possemato A, Yu J, Haack H, et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 2007;131:1190–203.

    Article  CAS  PubMed  Google Scholar 

  7. Amin HM, Lai R. Pathobiology of ALK+ anaplastic large-cell lymphoma. Blood 2007;110:2259–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chaft JE, Arcila ME, Paik PK, Lau C, Riely GJ, Pietanza MC, et al. Coexistence of PIK3CA and other oncogene mutations in lung adenocarcinoma-rationale for comprehensive mutation profiling. Mol Cancer Ther. 2012;11:485–91.

    Article  CAS  PubMed  Google Scholar 

  9. Stoica GE, Kuo A, Aigner A, Sunitha I, Souttou B, Malerczyk C, et al. Identification of anaplastic lymphoma kinase as a receptor for the growth factor pleiotrophin. J Biol Chem. 2001;276:16772–9.

    Article  CAS  PubMed  Google Scholar 

  10. Stoica GE, Kuo A, Powers C, Bowden ET, Sale EB, Riegel AT, et al. Midkine binds to anaplastic lymphoma kinase (ALK) and acts as a growth factor for different cell types. J Biol Chem. 2002;277:35990–8.

    Article  CAS  PubMed  Google Scholar 

  11. Wasik MA, Zhang Q, Marzec M, Kasprzycka M, Wang HY, Liu X. Anaplastic lymphoma kinase (ALK)-induced malignancies: novel mechanisms of cell transformation and potential therapeutic approaches. Semin Oncol. 2009;36(2 Suppl 1):S27–S35.

    Article  CAS  PubMed  Google Scholar 

  12. US Food and Drug Administration [updated March 11, 2016]. Available from: https://www.fda.gov/news-events/press-announcements/fda-expands-use-xalkori-treat-rare-form-advanced-non-small-cell-lung-cancer.

  13. Gainor JF, Shaw AT. Emerging paradigms in the development of resistance to tyrosine kinase inhibitors in lung cancer. J Clin Oncol. 2013;31:3987–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hrustanovic G, Olivas V, Pazarentzos E, Tulpule A, Asthana S, Blakely CM, et al. RAS-MAPK dependence underlies a rational polytherapy strategy in EML4-ALK-positive lung cancer. Nat Med. 2015;21:1038–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lovly CM, McDonald NT, Chen H, Ortiz-Cuaran S, Heukamp LC, Yan Y, et al. Rationale for co-targeting IGF-1R and ALK in ALK fusion-positive lung cancer. Nat Med. 2014;20:1027–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ros S, Schulze A. Balancing glycolytic flux: the role of 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatases in cancer metabolism. Cancer Metab. 2013;1:8.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yalcin A, Telang S, Clem B, Chesney J. Regulation of glucose metabolism by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases in cancer. Exp Mol Pathol. 2009;86:174–9.

    Article  CAS  PubMed  Google Scholar 

  18. Li F-L, Liu J-P, Bao R-X, Yan G, Feng X, Xu Y-P, et al. Acetylation accumulates PFKFB3 in cytoplasm to promote glycolysis and protects cells from cisplatin-induced apoptosis. Nat Commun. 2018;9:508.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhang C, Han X-R, Yang X, Jiang B, Liu J, Xiong Y, et al. Proteolysis targeting chimeras (PROTACs) of anaplastic lymphoma kinase (ALK). Eur J Med Chem. 2018;151:304–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ambrogio C, Voena C, Manazza AD, Piva R, Riera L, Barberis L, et al. p130Cas mediates the transforming properties of the anaplastic lymphoma kinase. Blood 2005;106:3907–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Clem BF, O’Neal J, Tapolsky G, Clem AL, Imbert-Fernandez Y, Kerr DA, et al. Targeting 6-phosphofructo-2-kinase (PFKFB3) as a therapeutic strategy against cancer. Mol Cancer Ther. 2013;12:1461–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chiarle R, Voena C, Ambrogio C, Piva R, Inghirami G. The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat Rev Cancer. 2008;8:11–23.

    Article  CAS  PubMed  Google Scholar 

  23. Mossé YP, Wood A, Maris JM. Inhibition of ALK signaling for cancer therapy. Clin Cancer Res. 2009;15:5609–14.

    Article  PubMed  Google Scholar 

  24. Bromberg JF, Wrzeszczynska MH, Devgan G, Zhao Y, Pestell RG, Albanese C, et al. Stat3 as an oncogene. Cell 1999;98:295–303.

    Article  CAS  PubMed  Google Scholar 

  25. Minami M, Inoue M, Wei S, Takeda K, Matsumoto M, Kishimoto T, et al. STAT3 activation is a critical step in gp130-mediated terminal differentiation and growth arrest of a myeloid cell line. Proc Natl Acad Sci USA. 1996;93:3963–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fontana D, Ceccon M, Gambacorti-Passerini C, Mologni L. Activity of second-generation ALK inhibitors against crizotinib-resistant mutants in an NPM-ALK model compared to EML4-ALK. Cancer Med. 2015;4:953–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Faubert B, Solmonson A, DeBerardinis RJ. Metabolic reprogramming and cancer progression. Science 2020;368:eaaw5473.

  28. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009;324:1029–33.

    Article  Google Scholar 

  29. Yalcin A, Clem BF, Simmons A, Lane A, Nelson K, Clem AL, et al. Nuclear targeting of 6-phosphofructo-2-kinase (PFKFB3) increases proliferation via cyclin-dependent kinases. J Biol Chem. 2009;284:24223–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gustafsson NMS, Färnegårdh K, Bonagas N, Ninou AH, Groth P, Wiita E, et al. Targeting PFKFB3 radiosensitizes cancer cells and suppresses homologous recombination. Nat Commun. 2018;9:3872.

    Article  PubMed  PubMed Central  Google Scholar 

  31. McDonnell SRP, Hwang SR, Rolland D, Murga-Zamalloa C, Basrur V, Conlon KP, et al. Integrated phosphoproteomic and metabolomic profiling reveals NPM-ALK-mediated phosphorylation of PKM2 and metabolic reprogramming in anaplastic large cell lymphoma. Blood 2013;122:958–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ma Y, Yu C, Mohamed EM, Shao H, Wang L, Sundaresan G, et al. A causal link from ALK to hexokinase II overexpression and hyperactive glycolysis in EML4-ALK-positive lung cancer. Oncogene 2016;35:6132–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cantelmo AR, Conradi L-C, Brajic A, Goveia J, Kalucka J, Pircher A, et al. Inhibition of the glycolytic activator PFKFB3 in endothelium induces tumor vessel normalization, impairs metastasis, and improves chemotherapy. Cancer Cell. 2016;30:968–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. De Bock K, Georgiadou M, Schoors S, Kuchnio A, Wong BW, Cantelmo AR, et al. Role of PFKFB3-driven glycolysis in vessel sprouting. Cell 2013;154:651–63.

    Article  PubMed  Google Scholar 

  35. Schoors S, De Bock K, Cantelmo AR, Georgiadou M, Ghesquière B, Cauwenberghs S, et al. Partial and transient reduction of glycolysis by PFKFB3 blockade reduces pathological angiogenesis. Cell Metab. 2014;19:37–48.

    Article  CAS  PubMed  Google Scholar 

  36. Minchenko A, Leshchinsky I, Opentanova I, Sang N, Srinivas V, Armstead V, et al. Hypoxia-inducible factor-1-mediated expression of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) gene. Its possible role in the Warburg effect. J Biol Chem. 2002;277:6183–7.

    Article  CAS  PubMed  Google Scholar 

  37. Tudzarova S, Colombo SL, Stoeber K, Carcamo S, Williams GH, Moncada S. Two ubiquitin ligases, APC/C-Cdh1 and SKP1-CUL1-F (SCF)-beta-TrCP, sequentially regulate glycolysis during the cell cycle. Proc Natl Acad Sci USA. 2011;108:5278–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Almeida A, Moncada S, Bolaños JP. Nitric oxide switches on glycolysis through the AMP protein kinase and 6-phosphofructo-2-kinase pathway. Nat Cell Biol. 2004;6:45–51.

    Article  CAS  PubMed  Google Scholar 

  39. Marsin A-S, Bouzin C, Bertrand L, Hue L. The stimulation of glycolysis by hypoxia in activated monocytes is mediated by AMP-activated protein kinase and inducible 6-phosphofructo-2-kinase. J Biol Chem. 2002;277:30778–83.

    Article  CAS  PubMed  Google Scholar 

  40. Yamamoto T, Takano N, Ishiwata K, Ohmura M, Nagahata Y, Matsuura T, et al. Reduced methylation of PFKFB3 in cancer cells shunts glucose towards the pentose phosphate pathway. Nat Commun. 2014;5:3480.

    Article  PubMed  Google Scholar 

  41. Normant E, Paez G, West KA, Lim AR, Slocum KL, Tunkey C, et al. The Hsp90 inhibitor IPI-504 rapidly lowers EML4-ALK levels and induces tumor regression in ALK-driven NSCLC models. Oncogene 2011;30:2581–6.

    Article  CAS  PubMed  Google Scholar 

  42. Clem B, Telang S, Clem A, Yalcin A, Meier J, Simmons A, et al. Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth. Mol Cancer Ther. 2008;7:110–20.

    Article  CAS  PubMed  Google Scholar 

  43. Doménech E, Maestre C, Esteban-Martínez L, Partida D, Pascual R, Fernández-Miranda G, et al. AMPK and PFKFB3 mediate glycolysis and survival in response to mitophagy during mitotic arrest. Nat Cell Biol. 2015;17:1304–16.

    Article  PubMed  Google Scholar 

  44. Wang Y, Qu C, Liu T, Wang C. PFKFB3 inhibitors as potential anticancer agents: mechanisms of action, current developments, and structure-activity relationships. Eur J Med Chem. 2020;203:112612.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Xian Chen and Ling Xie (UNC) for their aid with mass spectrometry analysis, and Jian Jin (Mount Sinai) and Jing Liu (Cullgen Inc.) for providing ALK degrader compound. We appreciate Hongbin Ji and Zhen Qin (SIBCB, CAS) for their help in the analysis of ALK mutant tumors. We also thank Kuirong Luo (Zhongshan Hospital, Fudan University) for the help with the interpretation of IHC results. This work was supported by the NSFC grants (No. 82172595 and 81773190 to H-XY), the National Key Research and Development Project of China (No. 2018YFA0800304 to H-XY), Supporting Program of Health Commission of Fujian Province for junior talents (2021GGB03 to ML) and Shanghai Pujiang Program (2020PJD009 to ML). H-XY is also supported by the Innovative Research Team of High-level Local University in Shanghai.

Author information

Authors and Affiliations

Authors

Contributions

MNH, RXB, YX, K-LG, and H-XY designed research; MNH, RXB, ML, X-RH, Y-JA, and YG carried out experiments; MNH, RXB, and H-XY analyzed data; MNH, YX, and H-XY wrote the paper. The order of co-authors is measured by contribution.

Corresponding author

Correspondence to Hai-Xin Yuan.

Ethics declarations

Competing interests

K-LG is a co-founder of Vivace Therapeutics. YX is a co-founder of Cullgen Inc. X-RH is an employee of Cullgen (Shanghai) Inc. Other authors declare no competing financial interests.

Ethics approval and consent to participate

All animal-related procedures were performed under the Division of Laboratory Animal Medicine Regulations of Fudan University. Written informed consent was obtained from each NSCLC patient who underwent surgery at the Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China. This study was approved by the Zhongshan Hospital Research Ethics Committee (No. B2021-131).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, M., Bao, R., Lin, M. et al. ALK fusion promotes metabolic reprogramming of cancer cells by transcriptionally upregulating PFKFB3. Oncogene 41, 4547–4559 (2022). https://doi.org/10.1038/s41388-022-02453-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02453-0

This article is cited by

Search

Quick links