Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The MAP3K ZAK, a novel modulator of ERK-dependent migration, is upregulated in colorectal cancer

Abstract

Often described as a mediator of cell cycle arrest or as a pro-apoptotic factor in stressful conditions, the MAP3K ZAK (Sterile alpha motif and leucine zipper-containing kinase) has also been proven to positively regulate epidermal growth factor receptor (EGFR) and WNT signaling pathways, cancer cell proliferation and cellular neoplastic transformation. Here, we show that both isoforms of ZAK, ZAK-α and ZAK-β are key factors in cancer cell migration. While ZAK depletion reduced cell motility of HeLa and HCT116 cells, its overexpression triggered the activation of all three mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinase (ERK), c-JUN N-terminal kinase (JNK) and p38, as well as an increase in cell motion. On the contrary, the kinase-dead mutants, ZAK-α K45M and ZAK-β K45M, were not able to provoke such events, and instead exerted a dominant-negative effect on MAPK activation and cell migration. Pharmacological inhibition of ZAK by nilotinib, preventing ZAK-autophosphorylation and thereby auto-activation, led to the same results. Activated by epidermal growth factor (EGF), we further showed that ZAK constitutes an essential element of the EGF/ERK-dependent cell migration pathway. Using public transcriptomic databases and tissue microarrays, we finally established that, as strong factors of the EGFR signaling pathway, ZAK-α and/or ZAK-β transcripts and protein(s) are frequently upregulated in colorectal adenoma and carcinoma patients. Notably, gene set enrichment analysis disclosed a significant correlation between ZAK+ colorectal premalignant lesions and gene sets belonging to the MAPK/ERK and motility-related signaling pathways of the reactome database, strongly suggesting that ZAK induces such pro-tumoral reaction cascades in human cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Schaeffer HJ, Weber MJ . Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol Cell Biol 1999; 19: 2435–2444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wagner EF, Nebreda AR . Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer 2009; 9: 537–549.

    Article  CAS  PubMed  Google Scholar 

  3. Keshet Y, Seger R . The MAP kinase signaling cascades: a system of hundreds of components regulates a diverse array of physiological functions. Methods Mol Biol 2010; 661: 3–38.

    Article  CAS  PubMed  Google Scholar 

  4. Yoon S, Seger R . The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors 2006; 24: 21–44.

    Article  CAS  PubMed  Google Scholar 

  5. Huang C, Jacobson K, Schaller MD . MAP kinases and cell migration. J Cell Sci 2004; 117: 4619–4628.

    Article  CAS  PubMed  Google Scholar 

  6. Rajalingam K, Wunder C, Brinkmann V, Churin Y, Hekman M, Sievers C et al. Prohibitin is required for Ras-induced Raf-MEK-ERK activation and epithelial cell migration. Nat Cell Biol 2005; 7: 837–843.

    Article  CAS  PubMed  Google Scholar 

  7. Reiterer V, Fey D, Kolch W, Kholodenko BN, Farhan H . Pseudophosphatase STYX modulates cell-fate decisions and cell migration by spatiotemporal regulation of ERK1/2. Proc Natl Acad Sci USA 2013; 110: E2934–E2943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gotoh I, Adachi M, Nishida E . Identification and characterization of a novel MAP kinase kinase kinase, MLTK. J Biol Chem 2001; 276: 4276–4286.

    Article  CAS  PubMed  Google Scholar 

  9. Gross EA, Callow MG, Waldbaum L, Thomas S, Ruggieri R . MRK, a mixed lineage kinase-related molecule that plays a role in gamma-radiation-induced cell cycle arrest. J Biol Chem 2002; 277: 13873–13882.

    Article  CAS  PubMed  Google Scholar 

  10. Bloem LJ, Pickard TR, Acton S, Donoghue M, Beavis RC, Knierman MD et al. Tissue distribution and functional expression of a cDNA encoding a novel mixed lineage kinase. J Mol Cell Cardiol 2001; 33: 1739–1750.

    Article  CAS  PubMed  Google Scholar 

  11. Liu TC, Huang CJ, Chu YC, Wei CC, Chou CC, Chou MY et al. Cloning and expression of ZAK, a mixed lineage kinase-like protein containing a leucine-zipper and a sterile-alpha motif. Biochem Biophys Res Commun 2000; 274: 811–816.

    Article  CAS  PubMed  Google Scholar 

  12. Takahashi M, Gotoh Y, Isagawa T, Nishimura T, Goyama E, Kim HS et al. Regulation of a mitogen-activated protein kinase kinase kinase, MLTK by PKN. J Biochem 2003; 133: 181–187.

    Article  CAS  PubMed  Google Scholar 

  13. Amano M, Mukai H, Ono Y, Chihara K, Matsui T, Hamajima Y et al. Identification of a putative target for Rho as the serine-threonine kinase protein kinase N. Science 1996; 271: 648–650.

    Article  CAS  PubMed  Google Scholar 

  14. Korkina O, Dong Z, Marullo A, Warshaw G, Symons M, Ruggieri R . The MLK-related kinase (MRK) is a novel RhoC effector that mediates lysophosphatidic acid (LPA)-stimulated tumor cell invasion. J Biol Chem 2013; 288: 5364–5373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Huang CY, Chueh PJ, Tseng CT, Liu KY, Tsai HY, Kuo WW et al. ZAK re-programs atrial natriuretic factor expression and induces hypertrophic growth in H9c2 cardiomyoblast cells. Biochem Biophys Res Commun 2004; 324: 973–980.

    Article  CAS  PubMed  Google Scholar 

  16. Yang JJ . Mixed lineage kinase ZAK utilizing MKK7 and not MKK4 to activate the c-Jun N-terminal kinase and playing a role in the cell arrest. Biochem Biophys Res Commun 2002; 297: 105–110.

    Article  CAS  PubMed  Google Scholar 

  17. Wang X, Mader MM, Toth JE, Yu X, Jin N, Campbell RM et al. Complete inhibition of anisomycin and UV radiation but not cytokine induced JNK and p38 activation by an aryl-substituted dihydropyrrolopyrazole quinoline and mixed lineage kinase 7 small interfering RNA. J Biol Chem 2005; 280: 19298–19305.

    Article  CAS  PubMed  Google Scholar 

  18. Yang JJ . A novel zinc finger protein, ZZaPK, interacts with ZAK and stimulates the ZAK-expressing cells re-entering the cell cycle. Biochem Biophys Res Commun 2003; 301: 71–77.

    Article  CAS  PubMed  Google Scholar 

  19. Cho YY, Bode AM, Mizuno H, Choi BY, Choi HS, Dong Z . A novel role for mixed-lineage kinase-like mitogen-activated protein triple kinase alpha in neoplastic cell transformation and tumor development. Cancer Res 2004; 64: 3855–3864.

    Article  CAS  PubMed  Google Scholar 

  20. Liu J, McCleland M, Stawiski EW, Gnad F, Mayba O, Haverty PM et al. Integrated exome and transcriptome sequencing reveals ZAK isoform usage in gastric cancer. Nat Commun 2014; 5: 3830.

    Article  CAS  PubMed  Google Scholar 

  21. Adler AS, McCleland ML, Yee S, Yaylaoglu M, Hussain S, Cosino E et al. An integrative analysis of colon cancer identifies an essential function for PRPF6 in tumor growth. Genes Dev 2014; 28: 1068–1084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Firestein R, Bass AJ, Kim SY, Dunn IF, Silver SJ, Guney I et al. CDK8 is a colorectal cancer oncogene that regulates beta-catenin activity. Nature 2008; 455: 547–551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vinayagam A, Stelzl U, Foulle R, Plassmann S, Zenkner M, Timm J et al. A directed protein interaction network for investigating intracellular signal transduction. Sci Signal 2011; 4: rs8.

    Article  PubMed  Google Scholar 

  24. Manley PW, Drueckes P, Fendrich G, Furet P, Liebetanz J, Martiny-Baron G et al. Extended kinase profile and properties of the protein kinase inhibitor nilotinib. Biochim Biophys Acta 2010; 1804: 445–453.

    Article  CAS  PubMed  Google Scholar 

  25. Rix U, Hantschel O, Durnberger G, Remsing Rix LL, Planyavsky M, Fernbach NV et al. Chemical proteomic profiles of the BCR-ABL inhibitors imatinib, nilotinib, and dasatinib reveal novel kinase and nonkinase targets. Blood 2007; 110: 4055–4063.

    Article  CAS  PubMed  Google Scholar 

  26. Rix U, Remsing Rix LL, Terker AS, Fernbach NV, Hantschel O, Planyavsky M et al. A comprehensive target selectivity survey of the BCR-ABL kinase inhibitor INNO-406 by kinase profiling and chemical proteomics in chronic myeloid leukemia cells. Leukemia 2010; 24: 44–50.

    Article  CAS  PubMed  Google Scholar 

  27. Choi HS, Choi BY, Cho YY, Zhu F, Bode AM, Dong Z . Phosphorylation of Ser28 in histone H3 mediated by mixed lineage kinase-like mitogen-activated protein triple kinase alpha. J Biol Chem 2005; 280: 13545–13553.

    Article  CAS  PubMed  Google Scholar 

  28. Sabates-Bellver J, Van der Flier LG, de Palo M, Cattaneo E, Maake C, Rehrauer H et al. Transcriptome profile of human colorectal adenomas. Mol Cancer Res 2007; 5: 1263–1275.

    Article  CAS  PubMed  Google Scholar 

  29. Yang JJ, Lee YJ, Hung HH, Tseng WP, Tu CC, Lee H et al. ZAK inhibits human lung cancer cell growth via ERK and JNK activation in an AP-1-dependent manner. Cancer Sci 2010; 101: 1374–1381.

    Article  CAS  PubMed  Google Scholar 

  30. Huang CY, Yang LC, Liu KY, Chang IC, Liao PH, Chou JI et al. ZAK negatively regulates RhoGDIbeta-induced Rac1-mediated hypertrophic growth and cell migration. J Biomed Sci 2009; 16: 56.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Huang CY, Yang LC, Liu KY, Liao PH, Chou JI, Chou MY et al. RhoGDIbeta-induced hypertrophic growth in H9c2 cells is negatively regulated by ZAK. J Biomed Sci 2009; 16: 11.

    Article  PubMed  PubMed Central  Google Scholar 

  32. DerMardirossian C, Schnelzer A, Bokoch GM . Phosphorylation of RhoGDI by Pak1 mediates dissociation of Rac GTPase. Mol Cell 2004; 15: 117–127.

    Article  CAS  PubMed  Google Scholar 

  33. DerMardirossian C, Bokoch GM . GDIs: central regulatory molecules in Rho GTPase activation. Trends Cell Biol 2005; 15: 356–363.

    Article  CAS  PubMed  Google Scholar 

  34. Griner EM, Churchill ME, Brautigan DL, Theodorescu D . PKCalpha phosphorylation of RhoGDI2 at Ser31 disrupts interactions with Rac1 and decreases GDI activity. Oncogene 2013; 32: 1010–1017.

    Article  CAS  PubMed  Google Scholar 

  35. Goi T, Shipitsin M, Lu Z, Foster DA, Klinz SG, Feig LA . An EGF receptor/Ral-GTPase signaling cascade regulates c-Src activity and substrate specificity. EMBO J 2000; 19: 623–630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ray RM, Li C, Bhattacharya S, Naren AP, Johnson LR . Spermine, a molecular switch regulating EGFR, integrin beta3, Src, and FAK scaffolding. Cell Signal 2012; 24: 931–942.

    Article  CAS  PubMed  Google Scholar 

  37. Sieg DJ, Hauck CR, Ilic D, Klingbeil CK, Schaefer E, Damsky CH et al. FAK integrates growth-factor and integrin signals to promote cell migration. Nat Cell Biol 2000; 2: 249–256.

    Article  CAS  PubMed  Google Scholar 

  38. Schaller MD . Cellular functions of FAK kinases: insight into molecular mechanisms and novel functions. J Cell Sci 2010; 123: 1007–1013.

    Article  CAS  PubMed  Google Scholar 

  39. Lu Z, Jiang G, Blume-Jensen P, Hunter T . Epidermal growth factor-induced tumor cell invasion and metastasis initiated by dephosphorylation and downregulation of focal adhesion kinase. Mol Cell Biol 2001; 21: 4016–4031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. van Zijl F, Krupitza G, Mikulits W . Initial steps of metastasis: cell invasion and endothelial transmigration. Mutat Res 2011; 728: 23–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C et al. NCBI GEO: mining tens of millions of expression profiles—database and tools update. Nucleic Acids Res 2007; 35: D760–D765.

    Article  CAS  PubMed  Google Scholar 

  42. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102: 15545–15550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 2003; 34: 267–273.

    Article  CAS  PubMed  Google Scholar 

  44. Rey C, Soubeyran I, Mahouche I, Pedeboscq S, Bessede A, Ichas F et al. HIPK1 drives p53 activation to limit colorectal cancer cell growth. Cell Cycle 2013; 12: 1879–1891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Soubeyran I, Mahouche I, Grigoletto A, Leste-Lasserre T, Drutel G, Rey C et al. Tissue microarray cytometry reveals positive impact of homeodomain interacting protein kinase 2 in colon cancer survival irrespective of p53 function. Am J Pathol 2011; 178: 1986–1998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the French National Institute for Medical Research (INSERM), Aquitaine Region, French Ministry of Research, Institut Bergonié, Association for Cancer Research (ARC), the Ligue Contre le Cancer, and Cancéropôle Grand Sud-Ouest, ‘Agir Cancer’ Gironde and The French National Research Agency (ANR). We thank Nicolas Faur, Raphael Moustié and Assia Chaibi for their technical help and Pippa McKelvie-Sebileau of Institut Bergonié for medical editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Lartigue.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rey, C., Faustin, B., Mahouche, I. et al. The MAP3K ZAK, a novel modulator of ERK-dependent migration, is upregulated in colorectal cancer. Oncogene 35, 3190–3200 (2016). https://doi.org/10.1038/onc.2015.379

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.379

This article is cited by

Search

Quick links