Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

LRIG1 opposes epithelial-to-mesenchymal transition and inhibits invasion of basal-like breast cancer cells

Abstract

LRIG1 (leucine-rich repeat and immunoglobulin-like domain containing), a member of the LRIG family of transmembrane leucine-rich repeat-containing proteins, is a negative regulator of receptor tyrosine kinase signaling and a tumor suppressor. LRIG1 expression is broadly decreased in human cancer and in breast cancer and low expression of LRIG1 has been linked to decreased relapse-free survival. Recently, low expression of LRIG1 was revealed to be an independent risk factor for breast cancer metastasis and death. These findings suggest that LRIG1 may oppose breast cancer cell motility and invasion, cellular processes that are fundamental to metastasis. However, very little is known of LRIG1 function in this regard. In this study, we demonstrate that LRIG1 is downregulated during epithelial-to-mesenchymal transition (EMT) of human mammary epithelial cells, suggesting that LRIG1 expression may represent a barrier to EMT. Indeed, depletion of endogenous LRIG1 in human mammary epithelial cells expands the stem cell population, augments mammosphere formation and accelerates EMT. Conversely, expression of LRIG1 in highly invasive Basal B breast cancer cells provokes a mesenchymal-to-epithelial transition accompanied by a dramatic suppression of tumorsphere formation and a striking loss of invasive growth in three-dimensional culture. LRIG1 expression perturbs multiple signaling pathways and represses markers and effectors of the mesenchymal state. Furthermore, LRIG1 expression in MDA-MB-231 breast cancer cells significantly slows their growth as tumors, providing the first in vivo evidence that LRIG1 functions as a growth suppressor in breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Hedman H, Henriksson R . LRIG inhibitors of growth factor signalling - double-edged swords in human cancer? Eur J Cancer 2007; 43: 676–682.

    Article  CAS  PubMed  Google Scholar 

  2. Gur G, Rubin C, Katz M, Amit I, Citri A, Nilsson J et al. LRIG1 restricts growth factor signaling by enhancing receptor ubiquitylation and degradation. EMBO J 2004; 23: 3270–3281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Laederich MB, Funes-Duran M, Yen L, Ingalla E, Wu X, Carraway KL 3rd et al. The leucine-rich repeat protein LRIG1 is a negative regulator of ErbB family receptor tyrosine kinases. J Biol Chem 2004; 279: 47050–47056.

    Article  CAS  PubMed  Google Scholar 

  4. Shattuck DL, Miller JK, Laederich M, Funes M, Petersen H, Carraway KL 3rd et al. LRIG1 is a novel negative regulator of the Met receptor and opposes Met and Her2 synergy. Mol Cell Biol 2007; 27: 1934–1946.

    Article  CAS  PubMed  Google Scholar 

  5. Lee JM, Kim B, Lee SB, Jeong Y, Oh YM, Song YJ et al. Cbl-independent degradation of Met: ways to avoid agonism of bivalent Met-targeting antibody. Oncogene 2014; 33: 34–43.

    Article  CAS  PubMed  Google Scholar 

  6. Ledda F, Bieraugel O, Fard SS, Vilar M, Paratcha G . Lrig1 is an endogenous inhibitor of Ret receptor tyrosine kinase activation, downstream signaling, and biological responses to GDNF. J Neurosci 2008; 28: 39–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rondahl V, Holmlund C, Karlsson T, Wang B, Faraz M, Henriksson R et al. Lrig2-deficient mice are protected against PDGFB-induced glioma. PLoS One 2013; 8: e73635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nilsson J, Vallbo C, Guo D, Golovleva I, Hallberg B, Henriksson R et al. Cloning, characterization, and expression of human LIG1. Biochem Biophys Res Commun 2001; 284: 1155–1161.

    Article  CAS  PubMed  Google Scholar 

  9. Wang Y, Poulin EJ, Coffey RJ . LRIG1 is a triple threat: ERBB negative regulator, intestinal stem cell marker and tumour suppressor. Br J Cancer 2013; 108: 1765–1770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rouam S, Moreau T, Broet P . Identifying common prognostic factors in genomic cancer studies: a novel index for censored outcomes. BMC Bioinformatics 2010; 11: 150.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tanemura A, Nagasawa T, Inui S, Itami S . LRIG-1 provides a novel prognostic predictor in squamous cell carcinoma of the skin: immunohistochemical analysis for 38 cases. Dermatol Surg 2005; 31: 423–430.

    Article  CAS  PubMed  Google Scholar 

  12. Muller S, Lindquist D, Kanter L, Flores-Staino C, Henriksson R, Hedman H et al. Expression of LRIG1 and LRIG3 correlates with human papillomavirus status and patient survival in cervical adenocarcinoma. Int J Oncol 2013; 42: 247–252.

    Article  PubMed  Google Scholar 

  13. Lindquist D, Nasman A, Tarjan M, Henriksson R, Tot T, Dalianis T et al. Expression of LRIG1 is associated with good prognosis and human papillomavirus status in oropharyngeal cancer. Br J Cancer 2014; 110: 1793–1800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sheu JJ, Lee CC, Hua CH, Li CI, Lai MT, Lee SC et al. LRIG1 modulates aggressiveness of head and neck cancers by regulating EGFR-MAPK-SPHK1 signaling and extracellular matrix remodeling. Oncogene 2014; 33: 1375–1384.

    Article  CAS  PubMed  Google Scholar 

  15. Krig SR, Frietze S, Simion C, Miller JK, Fry WH, Rafidi H et al. Lrig1 is an estrogen-regulated growth suppressor and correlates with longer relapse-free survival in ERalpha-positive breast cancer. Mol Cancer Res 2011; 9: 1406–1417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Suzuki Y, Miura H, Tanemura A, Kobayashi K, Kondoh G, Sano S et al. Targeted disruption of LIG-1 gene results in psoriasiform epidermal hyperplasia. FEBS Lett 2002; 521: 67–71.

    Article  CAS  PubMed  Google Scholar 

  17. Jensen KB, Collins CA, Nascimento E, Tan DW, Frye M, Itami S et al. Lrig1 expression defines a distinct multipotent stem cell population in mammalian epidermis. Cell Stem Cell 2009; 4: 427–439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wong VW, Stange DE, Page ME, Buczacki S, Wabik A, Itami S et al. Lrig1 controls intestinal stem-cell homeostasis by negative regulation of ErbB signalling. Nat Cell Biol 2012; 14: 401–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nakamura T, Hamuro J, Takaishi M, Simmons S, Maruyama K, Zaffalon A et al. LRIG1 inhibits STAT3-dependent inflammation to maintain corneal homeostasis. J Clin Invest 2014; 124: 385–397.

    Article  CAS  PubMed  Google Scholar 

  20. Lu L, Teixeira VH, Yuan Z, Graham TA, Endesfelder D, Kolluri K et al. LRIG1 regulates cadherin-dependent contact inhibition directing epithelial homeostasis and pre-invasive squamous cell carcinoma development. J Pathol 2013; 229: 608–620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Powell AE, Wang Y, Li Y, Poulin EJ, Means AL, Washington MK et al. The pan-ErbB negative regulator Lrig1 is an intestinal stem cell marker that functions as a tumor suppressor. Cell 2012; 149: 146–158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Watt FM, Jensen KB . Epidermal stem cell diversity and quiescence. EMBO Mol Med 2009; 1: 260–267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Miller JK, Shattuck DL, Ingalla EQ, Yen L, Borowsky AD, Young LJ et al. Suppression of the negative regulator LRIG1 contributes to ErbB2 overexpression in breast cancer. Cancer Res. 2008; 68: 8286–8294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Honeth G, Bendahl PO, Ringner M, Saal LH, Gruvberger-Saal SK, Lovgren K et al. The CD44+/CD24- phenotype is enriched in basal-like breast tumors. Breast Cancer Res 2008; 10: R53.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Nalwoga H, Arnes JB, Wabinga H, Akslen LA . Expression of aldehyde dehydrogenase 1 (ALDH1) is associated with basal-like markers and features of aggressive tumours in African breast cancer. Br J Cancer 2010; 102: 369–375.

    Article  CAS  PubMed  Google Scholar 

  26. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 2001; 98: 10869–10874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Leidy J, Khan A, Kandil D . Basal-like breast cancer: update on clinicopathologic, immunohistochemical, and molecular features. Arch Pathol Lab Med 2014; 138: 37–43.

    Article  CAS  PubMed  Google Scholar 

  28. Sarrio D, Rodriguez-Pinilla SM, Hardisson D, Cano A, Moreno-Bueno G, Palacios J . Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res 2008; 68: 989–997.

    Article  CAS  PubMed  Google Scholar 

  29. Valentin MD, da Silva SD, Privat M, Alaoui-Jamali M, Bignon YJ . Molecular insights on basal-like breast cancer. Breast Cancer Res Treat 2012; 134: 21–30.

    Article  CAS  PubMed  Google Scholar 

  30. Thompson PA, Ljuslinder I, Tsavachidis S, Brewster A, Sahin A, Hedman H et al. Loss of LRIG1 locus increases risk of early and late relapse of stage I/II breast cancer. Cancer Res 2014; 74: 2928–2935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 2006; 10: 515–527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jezequel P, Campone M, Gouraud W, Guerin-Charbonnel C, Leux C, Ricolleau G et al. bc-GenExMiner: an easy-to-use online platform for gene prognostic analyses in breast cancer. Breast Cancer Res Treat 2012; 131: 765–775.

    Article  PubMed  Google Scholar 

  33. Larue L, Bellacosa A . Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3' kinase/AKT pathways. Oncogene 2005; 24: 7443–7454.

    Article  CAS  PubMed  Google Scholar 

  34. Polyak K, Weinberg RA . Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 2009; 9: 265–273.

    Article  CAS  PubMed  Google Scholar 

  35. Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 2004; 117: 927–939.

    Article  CAS  PubMed  Google Scholar 

  36. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008; 133: 704–715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shapiro IM, Cheng AW, Flytzanis NC, Balsamo M, Condeelis JS, Oktay MH et al. An EMT-driven alternative splicing program occurs in human breast cancer and modulates cellular phenotype. PLoS Genet 2011; 7: e1002218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bai L, McEachern D, Yang CY, Lu J, Sun H, Wang S . LRIG1 modulates cancer cell sensitivity to Smac mimetics by regulating TNFalpha expression and receptor tyrosine kinase signaling. Cancer Res 2012; 72: 1229–1238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang Y, Wen M, Kwon Y, Xu Y, Liu Y, Zhang P et al. CUL4A induces epithelial-mesenchymal transition and promotes cancer metastasis by regulating ZEB1 expression. Cancer Res 2014; 74: 520–531.

    Article  CAS  PubMed  Google Scholar 

  40. Aigner K, Dampier B, Descovich L, Mikula M, Sultan A, Schreiber M et al. The transcription factor ZEB1 (deltaEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity. Oncogene 2007; 26: 6979–6988.

    Article  CAS  PubMed  Google Scholar 

  41. Rhodes LV, Tate CR, Segar HC, Burks HE, Phamduy TB, Hoang V et al. Suppression of triple-negative breast cancer metastasis by pan-DAC inhibitor panobinostat via inhibition of ZEB family of EMT master regulators. Breast Cancer Res Treat 2014; 145: 593–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cieply B, Pt Riley, Pifer PM, Widmeyer J, Addison JB, Ivanov AV et al. Suppression of the epithelial-mesenchymal transition by Grainyhead-like-2. Cancer Res 2012; 72: 2440–2453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tsai PC, Hsieh CY, Chiu CC, Wang CK, Chang LS, Lin SR . Cardiotoxin III suppresses MDA-MB-231 cell metastasis through the inhibition of EGF/EGFR-mediated signaling pathway. Toxicon 2012; 60: 734–743.

    Article  CAS  PubMed  Google Scholar 

  44. Chun J, Kim YS . Platycodin D inhibits migration, invasion, and growth of MDA-MB-231 human breast cancer cells via suppression of EGFR-mediated Akt and MAPK pathways. Chem Biol Interact 2013; 205: 212–221.

    Article  CAS  PubMed  Google Scholar 

  45. Lim YC, Han JH, Kang HJ, Kim YS, Lee BH, Choi EC et al. Overexpression of c-Met promotes invasion and metastasis of small oral tongue carcinoma. Oral Oncol 2012; 48: 1114–1119.

    Article  CAS  PubMed  Google Scholar 

  46. Mehner C, Hockla A, Miller E, Ran S, Radisky DC, Radisky ES . Tumor cell-produced matrix metalloproteinase 9 (MMP-9) drives malignant progression and metastasis of basal-like triple negative breast cancer. Oncotarget 2014; 5: 2736–2749.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Jimenez-Salazar JE, Posadas-Rodriguez P, Lazzarini-Lechuga RC, Luna-Lopez A, Zentella-Dehesa A, Gomez-Quiroz LE et al. Membrane-initiated estradiol signaling of epithelial-mesenchymal transition-associated mechanisms through regulation of tight junctions in human breast cancer cells. Horm Cancer 2014; 5: 161–173.

    Article  CAS  PubMed  Google Scholar 

  48. Wang F, Hansen RK, Radisky D, Yoneda T, Barcellos-Hoff MH, Petersen OW et al. Phenotypic reversion or death of cancer cells by altering signaling pathways in three-dimensional contexts. J Natl Cancer Inst 2002; 94: 1494–1503.

    Article  CAS  PubMed  Google Scholar 

  49. Young RK, Cailleau RM, Mackay B, Reeves WJ . Establishment of epithelial cell line MDA-MB-157 from metastatic pleural effusion of human breast carcinoma. In Vitro. 1974; 9: 239–245.

    Article  CAS  PubMed  Google Scholar 

  50. Wang B, Lindley LE, Fernandez-Vega V, Rieger ME, Sims AH, Briegel KJ . The T box transcription factor TBX2 promotes epithelial-mesenchymal transition and invasion of normal and malignant breast epithelial cells. PLoS One 2012; 7: e41355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Van Itallie CM, Anderson JM . Architecture of tight junctions and principles of molecular composition. Semin Cell Dev Biol 2014; 36: 157–165.

    Article  CAS  PubMed  Google Scholar 

  52. Jensen KB, Watt FM . Single-cell expression profiling of human epidermal stem and transit-amplifying cells: Lrig1 is a regulator of stem cell quiescence. Proc Natl Acad Sci USA 2006; 103: 11958–11963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Xie R, Yang H, Xiao Q, Mao F, Zhang S, Ye F et al. Downregulation of LRIG1 expression by RNA interference promotes the aggressive properties of glioma cells via EGFR/Akt/c-Myc activation. Oncol Rep 2013; 29: 177–184.

    Article  CAS  PubMed  Google Scholar 

  54. Knopfova L, Benes P, Pekarcikova L, Hermanova M, Masarik M, Pernicova Z et al. c-Myb regulates matrix metalloproteinases 1/9, and cathepsin D: implications for matrix-dependent breast cancer cell invasion and metastasis. Mol Cancer 2012; 11: 15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ho-Yen CM, Green AR, Rakha EA, Brentnall AR, Ellis IO, Kermorgant S et al. C-Met in invasive breast cancer: is there a relationship with the basal-like subtype? Cancer 2014; 120: 163–171.

    Article  CAS  PubMed  Google Scholar 

  56. Kim YJ, Choi JS, Seo J, Song JY, Lee SE, Kwon MJ et al. MET is a potential target for use in combination therapy with EGFR inhibition in triple-negative/basal-like breast cancer. Int J Cancer 2014; 134: 2424–2436.

    Article  CAS  PubMed  Google Scholar 

  57. Gastaldi S, Comoglio PM, Trusolino L . The Met oncogene and basal-like breast cancer: another culprit to watch out for? Breast Cancer Res 2010; 12: 208.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Munshi N, Jeay S, Li Y, Chen CR, France DS, Ashwell MA et al. ARQ 197, a novel and selective inhibitor of the human c-Met receptor tyrosine kinase with antitumor activity. Mol Cancer Ther 2010; 9: 1544–1553.

    Article  CAS  PubMed  Google Scholar 

  59. Stutz MA, Shattuck DL, Laederich MB, Carraway KL 3rd, Sweeney C . LRIG1 negatively regulates the oncogenic EGF receptor mutant EGFRvIII. Oncogene 2008; 27: 5741–5752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chang L, Shi R, Yang T, Li F, Li G, Guo Y et al. Restoration of LRIG1 suppresses bladder cancer cell growth by directly targeting EGFR activity. J Exp Clin Cancer Res 2013; 32: 101.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Hallett RM, Dvorkin-Gheva A, Bane A, Hassell JA . A gene signature for predicting outcome in patients with basal-like breast cancer. Sci Rep 2012; 2: 227.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Marchini C, Montani M, Konstantinidou G, Orru R, Mannucci S, Ramadori G et al. Mesenchymal/stromal gene expression signature relates to basal-like breast cancers, identifies bone metastasis and predicts resistance to therapies. PLoS One 2010; 5: e14131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rody A, Karn T, Liedtke C, Pusztai L, Ruckhaeberle E, Hanker L et al. A clinically relevant gene signature in triple negative and basal-like breast cancer. Breast Cancer Res 2011; 13: R97.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hennessy BT, Gonzalez-Angulo AM, Stemke-Hale K, Gilcrease MZ, Krishnamurthy S, Lee JS et al. Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics. Cancer Res 2009; 69: 4116–4124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gunasinghe NP, Wells A, Thompson EW, Hugo HJ . Mesenchymal-epithelial transition (MET) as a mechanism for metastatic colonisation in breast cancer. Cancer Metastasis Rev 2012; 31: 469–478.

    Article  CAS  PubMed  Google Scholar 

  66. Creighton CJ, Chang JC, Rosen JM . Epithelial-mesenchymal transition (EMT) in tumor-initiating cells and its clinical implications in breast cancer. J Mammary Gland Biol Neoplasia 2010; 15: 253–260.

    Article  PubMed  Google Scholar 

  67. Tarin D, Thompson EW, Newgreen DF . The fallacy of epithelial mesenchymal transition in neoplasia. Cancer Res 2005; 65: 5996–6000; discussion -1.

    Article  CAS  PubMed  Google Scholar 

  68. Dave B, Mittal V, Tan NM, Chang JC . Epithelial-mesenchymal transition, cancer stem cells and treatment resistance. Breast Cancer Res 2012; 14: 202.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Chao YL, Shepard CR, Wells A . Breast carcinoma cells re-express E-cadherin during mesenchymal to epithelial reverting transition. Mol Cancer 2010; 9: 179.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Trimboli AJ, Fukino K, de Bruin A, Wei G, Shen L, Tanner SM et al. Direct evidence for epithelial-mesenchymal transitions in breast cancer. Cancer Res 2008; 68: 937–945.

    Article  CAS  PubMed  Google Scholar 

  71. Ponzo MG, Park M . The Met receptor tyrosine kinase and basal breast cancer. Cell Cycle 2010; 9: 1043–1050.

    Article  CAS  PubMed  Google Scholar 

  72. Ponzo MG, Lesurf R, Petkiewicz S, O'Malley FP, Pinnaduwage D, Andrulis IL et al. Met induces mammary tumors with diverse histologies and is associated with poor outcome and human basal breast cancer. Proc Natl Acad Sci USA 2009; 106: 12903–12908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hochgrafe F, Zhang L, O'Toole SA, Browne BC, Pinese M, Porta Cubas A et al. Tyrosine phosphorylation profiling reveals the signaling network characteristics of Basal breast cancer cells. Cancer Res 2010; 70: 9391–9401.

    Article  PubMed  Google Scholar 

  74. Accornero P, Miretti S, Bersani F, Quaglino E, Martignani E, Baratta M . Met receptor acts uniquely for survival and morphogenesis of EGFR-dependent normal mammary epithelial and cancer cells. PLoS One 2012; 7: e44982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mueller KL, Madden JM, Zoratti GL, Kuperwasser C, List K, Boerner JL . Fibroblast-secreted hepatocyte growth factor mediates epidermal growth factor receptor tyrosine kinase inhibitor resistance in triple-negative breast cancers through paracrine activation of Met. Breast Cancer Res 2012; 14: R104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Liu L, Shi H, Liu Y, Anderson A, Peterson J, Greger J et al. Synergistic effects of foretinib with HER-targeted agents in MET and HER1- or HER2-coactivated tumor cells. Mol Cancer Ther 2011; 10: 518–530.

    Article  CAS  PubMed  Google Scholar 

  77. Rafidi H, Mercado F 3rd, Astudillo M, Fry WH, Saldana M, Carraway KL 3rd et al. Leucine-rich repeat and immunoglobulin domain-containing protein-1 (Lrig1) negative regulatory action toward ErbB receptor tyrosine kinases is opposed by leucine-rich repeat and immunoglobulin domain-containing protein 3 (Lrig3). J Biol Chem 2013; 288: 21593–21605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Debnath J, Muthuswamy SK, Brugge JS . Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 2003; 30: 256–268.

    Article  CAS  PubMed  Google Scholar 

  79. Hawkes SP, Li H, Taniguchi GT . Zymography and reverse zymography for detecting MMPs and TIMPs. Methods Mol Biol 2010; 622: 257–269.

    Article  CAS  PubMed  Google Scholar 

  80. Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 2003; 17: 1253–1270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Robert Weinberg (Whitehead Institute) for the kind gift of the HMLE and HMLE-Twist-ER cells, Dr Paola Marignani (Dalhousie University) for the kind gift of the 293GPG packaging cell line, and Dr Ashley Hodel and Mr Sina Azadi for technical support and advice. Dr Nucharee Yokdang was a trainee on the T32 training grant in Oncogenic Signals and Chromosome Biology (CA108459). Dr Joseph Tellez was supported by a Lawrence Livermore National Labs UC Davis Fitzpatrick Research Fellowship. This work was supported by NIH grants CA118384 (Sweeney) and CA166412 (Carraway). We acknowledge the UC Davis Comprehensive Cancer Center Support Grant (CCSG) awarded by the National Cancer Institute (NCI P30CA093373) for using the flow cytometer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Sweeney.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yokdang, N., Hatakeyama, J., Wald, J. et al. LRIG1 opposes epithelial-to-mesenchymal transition and inhibits invasion of basal-like breast cancer cells. Oncogene 35, 2932–2947 (2016). https://doi.org/10.1038/onc.2015.345

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.345

This article is cited by

Search

Quick links