Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The BET bromodomain inhibitor JQ1 suppresses growth of pancreatic ductal adenocarcinoma in patient-derived xenograft models

Abstract

The primary aim of this study was to evaluate the antitumor efficacy of the bromodomain inhibitor JQ1 in pancreatic ductal adenocarcinoma (PDAC) patient-derived xenograft (tumorgraft) models. A secondary aim of the study was to evaluate whether JQ1 decreases expression of the oncogene c-Myc in PDAC tumors, as has been reported for other tumor types. We used five PDAC tumorgraft models that retain specific characteristics of tumors of origin to evaluate the antitumor efficacy of JQ1. Tumor-bearing mice were treated with JQ1 (50 mg/kg daily for 21 or 28 days). Expression analyses were performed with tumors harvested from host mice after treatment with JQ1 or vehicle control. An nCounter PanCancer Pathways Panel (NanoString Technologies) of 230 cancer-related genes was used to identify gene products affected by JQ1. Quantitative RT–PCR, immunohistochemistry and immunoblots were carried out to confirm that changes in RNA expression reflected changes in protein expression. JQ1 inhibited the growth of all five tumorgraft models (P<0.05), each of which harbors a KRAS mutation; but induced no consistent change in expression of c-Myc protein. Expression profiling identified CDC25B, a regulator of cell cycle progression, as one of the three RNA species (TIMP3, LMO2 and CDC25B) downregulated by JQ1 (P<0.05). Inhibition of tumor progression was more closely related to decreased expression of nuclear CDC25B than to changes in c-Myc expression. JQ1 and other agents that inhibit the function of proteins with bromodomains merit further investigation for treating PDAC tumors. Work is ongoing in our laboratory to identify effective drug combinations that include JQ1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Siegel R, Ma J, Zou Z, Jemal A . Cancer statistics, 2014. CA Cancer J Clin 2014; 64: 9–29.

    Google Scholar 

  2. American Cancer Society. Cancer Facts and Figures 2014. Atlanta: American Cancer Society; 2014.

  3. Gillen S, Schuster T, Meyer Zum Buschenfelde C, Friess H, Kleeff J . Preoperative/neoadjuvant therapy in pancreatic cancer: a systematic review and meta-analysis of response and resection percentages. PLoS Med 2010; 7: e1000267.

    Article  Google Scholar 

  4. Burris H, Storniolo AM . Assessing clinical benefit in the treatment of pancreas cancer: gemcitabine compared to 5-fluorouracil. Eur J Cancer 1997; 33: S18–S22.

    Article  CAS  Google Scholar 

  5. Burris HA 3rd, Moore MJ, Andersen J, Green MR, Rothenberg ML, Modiano MR et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol 1997; 15: 2403–2413.

    Article  CAS  Google Scholar 

  6. Bryant KL, Mancias JD, Kimmelman AC, Der CJ . KRAS: feeding pancreatic cancer proliferation. Trends Biochem Sci 2014; 39: 91–100.

    Article  CAS  Google Scholar 

  7. Morton JP, Timpson P, Karim SA, Ridgway RA, Athineos D, Doyle B et al. Mutant p53 drives metastasis and overcomes growth arrest/senescence in pancreatic cancer. Proc Natl Acad Sci USA 2010; 107: 246–251.

    Article  CAS  Google Scholar 

  8. Rozenblum E, Schutte M, Goggins M, Hahn SA, Panzer S, Zahurak M et al. Tumor-suppressive pathways in pancreatic carcinoma. Cancer Res 1997; 57: 1731–1734.

    CAS  PubMed  Google Scholar 

  9. Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 2008; 321: 1801–1806.

    Article  CAS  Google Scholar 

  10. Schleger C, Verbeke C, Hildenbrand R, Zentgraf H, Bleyl U . c-MYC activation in primary and metastatic ductal adenocarcinoma of the pancreas: incidence, mechanisms, and clinical significance. Mod Pathol 2002; 15: 462–469.

    Article  CAS  Google Scholar 

  11. Lin WC, Rajbhandari N, Liu C, Sakamoto K, Zhang Q, Triplett AA et al. Dormant cancer cells contribute to residual disease in a model of reversible pancreatic cancer. Cancer Res 2013; 73: 1821–1830.

    Article  CAS  Google Scholar 

  12. Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 2011; 146: 904–917.

    Article  CAS  Google Scholar 

  13. Mertz JA, Conery AR, Bryant BM, Sandy P, Balasubramanian S, Mele DA et al. Targeting MYC dependence in cancer by inhibiting BET bromodomains. Proc Natl Acad Sci USA 2011; 108: 16669–16674.

    Article  CAS  Google Scholar 

  14. Trabucco SE, Gerstein RM, Evens AM, Bradner JE, Shultz LD, Greiner DL et al. Inhibition of bromodomain proteins for the treatment of human diffuse large B-cell lymphoma. Clin Cancer Res 2015; 21: 113–122.

    Article  CAS  Google Scholar 

  15. Knoechel B, Roderick JE, Williamson KE, Zhu J, Lohr JG, Cotton MJ et al. An epigenetic mechanism of resistance to targeted therapy in T cell acute lymphoblastic leukemia. Nat Genet 2014; 46: 364–370.

    Article  CAS  Google Scholar 

  16. Roderick JE, Tesell J, Shultz LD, Brehm MA, Greiner DL, Harris MH et al. c-Myc inhibition prevents leukemia initiation in mice and impairs the growth of relapsed and induction failure pediatric T-ALL cells. Blood 2014; 123: 1040–1050.

    Article  CAS  Google Scholar 

  17. Loven J, Hoke HA, Lin CY, Lau A, Orlando DA, Vakoc CR et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 2013; 153: 320–334.

    Article  CAS  Google Scholar 

  18. Bandopadhayay P, Bergthold G, Nguyen B, Schubert S, Gholamin S, Tang Y et al. BET bromodomain inhibition of MYC-amplified medulloblastoma. Clin Cancer Res 2014; 20: 912–925.

    Article  CAS  Google Scholar 

  19. Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB, Fedorov O et al. Selective inhibition of BET bromodomains. Nature 2010; 468: 1067–1073.

    Article  CAS  Google Scholar 

  20. Puissant A, Frumm SM, Alexe G, Bassil CF, Qi J, Chanthery YH et al. Targeting MYCN in neuroblastoma by BET bromodomain inhibition. Cancer Discov 2013; 3: 308–323.

    Article  CAS  Google Scholar 

  21. Cheng Z, Gong Y, Ma Y, Lu K, Lu X, Pierce LA et al. Inhibition of BET bromodomain targets genetically diverse glioblastoma. Clin Cancer Res 2013; 19: 1748–1759.

    Article  CAS  Google Scholar 

  22. Garcia PL, Council LN, Christein JD, Arnoletti JP, Heslin MJ, Gamblin TL et al. Development and histopathological characterization of tumorgraft models of pancreatic ductal adenocarcinoma. PLoS One 2013; 8: e78183.

    Article  CAS  Google Scholar 

  23. Ott CJ, Kopp N, Bird L, Paranal RM, Qi J, Bowman T et al. BET bromodomain inhibition targets both c-Myc and IL7R in high-risk acute lymphoblastic leukemia. Blood 2012; 120: 2843–2852.

    Article  CAS  Google Scholar 

  24. Da Costa D, Agathanggelou A, Perry T, Weston V, Petermann E, Zlatanou A et al. BET inhibition as a single or combined therapeutic approach in primary paediatric B-precursor acute lymphoblastic leukaemia. Blood Cancer J 2013; 3: e126.

    Article  CAS  Google Scholar 

  25. Feng Q, Zhang Z, Shea MJ, Creighton CJ, Coarfa C, Hilsenbeck SG et al. An epigenomic approach to therapy for tamoxifen-resistant breast cancer. Cell Res 2014; 24: 809–819.

    Article  CAS  Google Scholar 

  26. Loosveld M, Castellano R, Gon S, Goubard A, Crouzet T, Pouyet L et al. Therapeutic targeting of c-Myc in T-cell acute lymphoblastic leukemia, T-ALL. Oncotarget 2014; 5: 3168–3172.

    Article  Google Scholar 

  27. Asangani IA, Dommeti VL, Wang X, Malik R, Cieslik M, Yang R et al. Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer. Nature 2014; 510: 278–282.

    Article  CAS  Google Scholar 

  28. Fowler T, Ghatak P, Price DH, Conaway R, Conaway J, Chiang CM et al. Regulation of MYC expression and differential JQ1 sensitivity in cancer cells. PLoS One 2014; 9: e87003.

    Article  Google Scholar 

  29. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25: 402–408.

    Article  CAS  Google Scholar 

  30. Guerra L, Albihn A, Tronnersjo S, Yan Q, Guidi R, Stenerlow B et al. Myc is required for activation of the ATM-dependent checkpoints in response to DNA damage. PLoS One 2010; 5: e8924.

    Article  Google Scholar 

  31. Chandra S, Priyadarshini R, Madhavan V, Tikoo S, Hussain M, Mudgal R et al. Enhancement of c-Myc degradation by BLM helicase leads to delayed tumor initiation. J Cell Sci 2013; 126: 3782–3795.

    Article  CAS  Google Scholar 

  32. Chen Y, Xu J, Borowicz S, Collins C, Huo D, Olopade OI . c-Myc activates BRCA1 gene expression through distal promoter elements in breast cancer cells. BMC Cancer 2011; 11: 246.

    Article  Google Scholar 

  33. Li LH, Nerlov C, Prendergast G, MacGregor D, Ziff EB . c-Myc represses transcription in vivo by a novel mechanism dependent on the initiator element and Myc box II. EMBO J 1994; 13: 4070–4079.

    Article  CAS  Google Scholar 

  34. Wang WJ, Wu SP, Liu JB, Shi YS, Huang X, Zhang QB et al. MYC regulation of CHK1 and CHK2 promotes radioresistance in a stem cell-like population of nasopharyngeal carcinoma cells. Cancer Res 2013; 73: 1219–1231.

    Article  CAS  Google Scholar 

  35. Schuldiner O, Benvenisty N . A DNA microarray screen for genes involved in c-MYC and N-MYC oncogenesis in human tumors. Oncogene 2001; 20: 4984–4994.

    Article  CAS  Google Scholar 

  36. Menssen A, Hermeking H . Characterization of the c-MYC-regulated transcriptome by SAGE: identification and analysis of c-MYC target genes. Proc Natl Acad Sci USA 2002; 99: 6274–6279.

    Article  CAS  Google Scholar 

  37. Koshiji M, To KK, Hammer S, Kumamoto K, Harris AL, Modrich P et al. HIF-1alpha induces genetic instability by transcriptionally downregulating MutSalpha expression. Mol Cell 2005; 17: 793–803.

    Article  CAS  Google Scholar 

  38. Li Z, Van Calcar S, Qu C, Cavenee WK, Zhang MQ, Ren B . A global transcriptional regulatory role for c-Myc in Burkitt's lymphoma cells. Proc Natl Acad Sci USA 2003; 100: 8164–8169.

    Article  CAS  Google Scholar 

  39. Sibani S, Price GB, Zannis-Hadjopoulos M . Decreased origin usage and initiation of DNA replication in haploinsufficient HCT116 Ku80+/- cells. J Cell Sci 2005; 118: 3247–3261.

    Article  CAS  Google Scholar 

  40. Philipp A, Schneider A, Vasrik I, Finke K, Xiong Y, Beach D et al. Repression of cyclin D1: a novel function of MYC. Mol Cell Biol 1994; 14: 4032–4043.

    Article  CAS  Google Scholar 

  41. Gartel AL, Ye X, Goufman E, Shianov P, Hay N, Najmabadi F et al. Myc represses the p21(WAF1/CIP1) promoter and interacts with Sp1/Sp3. Proc Natl Acad Sci USA 2001; 98: 4510–4515.

    Article  CAS  Google Scholar 

  42. Seoane J, Le HV, Massague J . Myc suppression of the p21(Cip1) Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature 2002; 419: 729–734.

    Article  CAS  Google Scholar 

  43. Kulkarni MV, Franklin DS . N-Myc is a downstream target of RET signaling and is required for transcriptional regulation of p18(Ink4c) by the transforming mutant RET(C634R). Mol Oncol 2011; 5: 24–35.

    Article  CAS  Google Scholar 

  44. Qi Y, Gregory MA, Li Z, Brousal JP, West K, Hann SR . p19ARF directly and differentially controls the functions of c-Myc independently of p53. Nature 2004; 431: 712–717.

    Article  CAS  Google Scholar 

  45. Hermeking H, Rago C, Schuhmacher M, Li Q, Barrett JF, Obaya AJ et al. Identification of CDK4 as a target of c-MYC. Proc Natl Acad Sci USA 2000; 97: 2229–2234.

    Article  CAS  Google Scholar 

  46. Born TL, Frost JA, Schonthal A, Prendergast GC, Feramisco JR . c-Myc cooperates with activated Ras to induce the cdc2 promoter. Mol Cell Biol 1994; 14: 5710–5718.

    Article  CAS  Google Scholar 

  47. Galaktionov K, Chen X, Beach D . Cdc25 cell-cycle phosphatase as a target of c-myc. Nature 1996; 382: 511–517.

    Article  CAS  Google Scholar 

  48. Matsumura I, Tanaka H, Kanakura Y . E2F1 and c-Myc in cell growth and death. Cell Cycle 2003; 2: 333–338.

    Article  CAS  Google Scholar 

  49. Shimamura T, Chen Z, Soucheray M, Carretero J, Kikuchi E, Tchaicha JH et al. Efficacy of BET bromodomain inhibition in Kras-mutant non-small cell lung cancer. Clin Cancer Res 2013; 19: 6183–6192.

    Article  CAS  Google Scholar 

  50. Galaktionov K, Lee AK, Eckstein J, Draetta G, Meckler J, Loda M et al. CDC25 phosphatases as potential human oncogenes. Science 1995; 269: 1575–1577.

    Article  CAS  Google Scholar 

  51. Guo J, Kleeff J, Li J, Ding J, Hammer J, Zhao Y et al. Expression and functional significance of CDC25B in human pancreatic ductal adenocarcinoma. Oncogene 2004; 23: 71–81.

    Article  Google Scholar 

  52. Lindqvist A, Kallstrom H, Karlsson Rosenthal C . Characterisation of Cdc25B localisation and nuclear export during the cell cycle and in response to stress. J Cell Sci 2004; 117: 4979–4990.

    Article  CAS  Google Scholar 

  53. Gabrielli BG, De Souza CP, Tonks ID, Clark JM, Hayward NK, Ellem KA . Cytoplasmic accumulation of cdc25B phosphatase in mitosis triggers centrosomal microtubule nucleation in HeLa cells. J Cell Sci 1996; 109: 1081–1093.

    CAS  Google Scholar 

  54. Sahai V, Kumar K, Knab LM, Chow CR, Raza SS, Bentrem DJ et al. BET bromodomain inhibitors block growth of pancreatic cancer cells in three-dimensional collagen. Mol Cancer Ther 2014; 13: 1907–1917.

    Article  CAS  Google Scholar 

  55. Lockwood WW, Zejnullahu K, Bradner JE, Varmus H . Sensitivity of human lung adenocarcinoma cell lines to targeted inhibition of BET epigenetic signaling proteins. Proc Natl Acad Sci USA 2012; 109: 19408–19413.

    Article  CAS  Google Scholar 

  56. Matzuk MM, McKeown MR, Filippakopoulos P, Li Q, Ma L, Agno JE et al. Small-molecule inhibition of BRDT for male contraception. Cell 2012; 150: 673–684.

    Article  CAS  Google Scholar 

  57. Yu XY, Zhang Z, Zhang GJ, Guo KF, Kong CZ . Knockdown of Cdc25B in renal cell carcinoma is associated with decreased malignant features. Asian Pac J Cancer Prev 2012; 13: 931–935.

    Article  Google Scholar 

  58. Fu X, Guadagni F, Hoffman RM . A metastatic nude-mouse model of human pancreatic cancer constructed orthotopically with histologically intact patient specimens. Proc Natl Acad Sci USA 1992; 89: 5645–5649.

    Article  CAS  Google Scholar 

  59. Suetsugu A, Katz M, Fleming J, Truty M, Thomas R, Moriwaki H et al. Multi-color palette of fluorescent proteins for imaging the tumor microenvironment of orthotopic tumorgraft mouse models of clinical pancreatic cancer specimens. J Cell Biochem 2012; 113: 2290–2295.

    Article  CAS  Google Scholar 

  60. Suetsugu A, Katz M, Fleming J, Truty M, Thomas R, Saji S et al. Imageable fluorescent metastasis resulting in transgenic GFP mice orthotopically implanted with human-patient primary pancreatic cancer specimens. Anticancer Res 2012; 32: 1175–1180.

    PubMed  Google Scholar 

  61. Suetsugu A, Katz M, Fleming J, Truty M, Thomas R, Saji S et al. Non-invasive fluorescent-protein imaging of orthotopic pancreatic-cancer-patient tumorgraft progression in nude mice. Anticancer Res 2012; 32: 3063–3067.

    CAS  PubMed  Google Scholar 

  62. Hiroshima Y, Zhao M, Maawy A, Zhang Y, Katz MH, Fleming JB et al. Efficacy of Salmonella typhimurium A1-R versus chemotherapy on a pancreatic cancer patient-derived orthotopic xenograft (PDOX). J Cell Biochem 2014; 115: 1254–1261.

    Article  CAS  Google Scholar 

  63. Hiroshima Y, Maawy A, Zhang Y, Murakami T, Momiyama M, Mori R et al. Metastatic recurrence in a pancreatic cancer patient derived orthotopic xenograft (PDOX) nude mouse model is inhibited by neoadjuvant chemotherapy in combination with fluorescence-guided surgery with an anti-CA 19-9-conjugated fluorophore. PLoS One 2014; 9: e114310.

    Article  Google Scholar 

  64. Hiroshima Y, Zhang Y, Murakami T, Maawy A, Miwa S, Yamamoto M et al. Efficacy of tumor-targeting Salmonella typhimurium A1-R in combination with anti-angiogenesis therapy on a pancreatic cancer patient-derived orthotopic xenograft (PDOX) and cell line mouse models. Oncotarget 2014; 5: 12346–12357.

    Article  Google Scholar 

  65. Geiss GK, Bumgarner RE, Birditt B, Dahl T, Dowidar N, Dunaway DL et al. Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat Biotechnol 2008; 26: 317–325.

    Article  CAS  Google Scholar 

  66. Gerdes J, Lemke H, Baisch H, Wacker HH, Schwab U, Stein H . Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol 1984; 133: 1710–1715.

    CAS  Google Scholar 

  67. Briasoulis E, Tsokos M, Fountzilas G, Bafaloukos D, Kosmidis P, Samantas E et al. Bcl2 and p53 protein expression in metastatic carcinoma of unknown primary origin: biological and clinical implications. A Hellenic Co-operative Oncology Group study. Anticancer Res 1998; 18: 1907–1914.

    CAS  PubMed  Google Scholar 

  68. O'Brien J, Wilson I, Orton T, Pognan F . Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem 2000; 267: 5421–5426.

    Article  CAS  Google Scholar 

  69. Eisen MB, Spellman PT, Brown PO, Botstein D . Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 1998; 95: 14863–14868.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs Donald J Buchsbaum, William E Grizzle, Mary-Ann Bjornsti and Christopher Klug for their insightful guidance and helpful discussions. This research was supported in part by UAB/UMN SPORE in pancreatic cancer (P50 CA101955).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K J Yoon.

Ethics declarations

Competing interests

James E Bradner and DFCI founded Tensha Therapeutics to develop derivatives of JQ1 and similar molecules for cancer therapy.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia, P., Miller, A., Kreitzburg, K. et al. The BET bromodomain inhibitor JQ1 suppresses growth of pancreatic ductal adenocarcinoma in patient-derived xenograft models. Oncogene 35, 833–845 (2016). https://doi.org/10.1038/onc.2015.126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.126

This article is cited by

Search

Quick links