Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

AIP inactivation leads to pituitary tumorigenesis through defective Gαi-cAMP signaling

Abstract

The aryl hydrocarbon receptor interacting protein (AIP) is a tumor-suppressor gene underlying the pituitary adenoma predisposition. Thus far, the exact molecular mechanisms by which inactivated AIP exerts its tumor-promoting action have been unclear. To better understand the role of AIP in pituitary tumorigenesis, we performed gene expression microarray analysis to examine changes between Aip wild-type and knockout mouse embryonic fibroblast (MEF) cell lines. Transcriptional analyses implied that Aip deficiency causes a dysfunction in cyclic adenosine monophosphate (cAMP) signaling, as well as impairments in signaling cascades associated with developmental and immune-inflammatory responses. In vitro experiments showed that AIP deficiency increases intracellular cAMP concentrations in both MEF and murine pituitary adenoma cell lines. Based on knockdown of various G protein α subunits, we concluded that AIP deficiency leads to elevated cAMP concentrations through defective Gαi-2 and Gαi-3 proteins that normally inhibit cAMP synthesis. Furthermore, immunostaining of Gαi-2 revealed that AIP deficiency is associated with a clear reduction in Gαi-2 protein expression levels in human and mouse growth hormone (GH)-secreting pituitary adenomas, thus indicating defective Gαi signaling in these tumors. By contrast, all prolactin-secreting tumors showed prominent Gαi-2 protein levels, irrespective of Aip mutation status. We additionally observed reduced expression of phosphorylated extracellular signal-regulated kinases 1/2 and cAMP response element-binding protein levels in mouse and human AIP-deficient somatotropinomas. This study implies for the first time that a failure to inhibit cAMP synthesis through dysfunctional Gαi signaling underlies the development of GH-secreting pituitary adenomas in AIP mutation carriers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Meyer BK, Perdew GH . Characterization of the AhR-hsp90-XAP2 core complex and the role of the immunophil-related protein XAP2 in AhR stabilization. Biochemistry 1999; 38: 8907–8917.

    Article  CAS  Google Scholar 

  2. Kazlauskas A, Poellinger L, Pongratz I . The immunophilin-like protein XAP2 regulates ubiquitination and subcellular localization of the dioxin receptor. J Biol Chem 2000; 275: 41317–41324.

    Article  CAS  Google Scholar 

  3. Trivellin G, Korbonits M . AIP and its interacting partners. J Endocrinol 2011; 210: 137–155.

    Article  CAS  Google Scholar 

  4. Vierimaa O, Georgitsi M, Lehtonen R, Vahteristo P, Kokko A, Raitila A et al. Pituitary adenoma predisposition caused by germline mutations in the AIP gene. Science 2006; 312: 1228–1230.

    Article  CAS  Google Scholar 

  5. Georgitsi M, Raitila A, Karhu A, Tuppurainen K, Mäkinen MJ, Vierimaa O et al. Molecular diagnosis of pituitary adenoma predisposition caused by aryl hydrocarbon receptor-interacting protein gene mutations. Proc Natl Acad Sci USA 2007; 104: 4101–4105.

    Article  CAS  Google Scholar 

  6. Daly AF, Tichomirowa MA, Petrossians P, Heliövaara E, Jaffrain-Rea ML, Barlier A et al. Clinical characteristics and therapeutic responses in patients with germ-line AIP mutations and pituitary adenomas: an international collaborative study. J Clin Endocrinol Metab 2010; 95: E373–E383.

    Article  Google Scholar 

  7. Leontiou CA, Gueorguiev M, van der Spuy J, Quinton R, Lolli F, Hassan S et al. The role of the aryl hydrocarbon receptor-interacting protein gene in familial and sporadic pituitary adenomas. J Clin Endocrinol Metab 2008; 93: 2390–2401.

    Article  CAS  Google Scholar 

  8. Daly AF, Vanbellinghen JF, Khoo SK, Jaffrain-Rea ML, Naves LA, Guitelman MA et al. Aryl hydrocarbon receptor-interacting protein gene mutations in familial isolated pituitary adenomas: analysis in 73 families. J Clin Endocrinol Metab 2007; 92: 1891–1896.

    Article  CAS  Google Scholar 

  9. Wettschureck N, Moers A, Offermanns S . Mouse models to study G-protein-mediated signaling. Pharmacol Ther 2004; 101: 75–89.

    Article  CAS  Google Scholar 

  10. Hayward BE, Barlier A, Korbonits M, Grossman AB, Jacquet P, Enjalbert A et al. Imprinting of the G(s)-alpha gene GNAS1 in the pathogenesis of acromegaly. J Clin Invest 2001; 107: R31–R36.

    Article  CAS  Google Scholar 

  11. Vallar L, Spada A, Giannattasio G . Altered Gs and adenylate cyclase activity in human GH-secreting pituitary adenomas. Nature 1987; 330: 566–568.

    Article  CAS  Google Scholar 

  12. Landis CS, Masters SB, Spada A, Pace AM, Bourne HR, Vallar L . GTPase inhibiting mutations activate the α chain of Gs and stimulate adenylyl cyclase in human pituitary tumors. Nature 1989; 340: 692–696.

    Article  CAS  Google Scholar 

  13. Bertherat J, Chanson P, Montminy M . The cyclic adenosine 3′,5′-monophospate-responsive factor CREB is constitutively activated in human somatotroph adenomas. Mol Endocrinol 1995; 9: 777–783.

    CAS  PubMed  Google Scholar 

  14. Weinstein LS, Shenker A, Gejman PV, Merino MJ, Friedman E, Spiegel AM . Activating mutations of the stimulatory G protein in the McCune-Albright syndrome. New Engl J Med 1991; 325: 1688–1695.

    Article  CAS  Google Scholar 

  15. Schwindinger WF, Francomano CA, Levine MA . Identification of a mutation in the gene encoding the alpha subunit of the stimulatory G protein of adenylyl cyclase in McCune-Albright syndrome. Proc Natl Acad Sci USA 1992; 89: 5152–5156.

    Article  CAS  Google Scholar 

  16. Kirschner LS, Carney JA, Pack SD, Taymans SE, Giatzakis C, Cho YS et al. Mutations of the gene encoding the protein kinase A type I-alpha regulatory subunit in patients with the Carney complex. Nat Genet 2000; 26: 89–92.

    Article  CAS  Google Scholar 

  17. Boikos SA, Stratakis CA . Molecular genetics of the cAMP-dependent protein kinase pathway and of sporadic pituitary tumorigenesis. Hum Mol Genet 2007; 16: R80–R87.

    Article  CAS  Google Scholar 

  18. Van Raamsdonk CD, Bezrookove V, Green G, Bauer J, Gaugler L, O'Brien JM et al. Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature 2009; 457: 599–603.

    Article  CAS  Google Scholar 

  19. Van Raamsdonk CD, Griewank KG, Crosby MB, Garrido MC, Vemula S, Wiesner T et al. Mutations in GNA11 in uveal melanoma. N Engl J Med 2010; 363: 2191–2199.

    Article  CAS  Google Scholar 

  20. Nesbit MA, Hannan FM, Phil D, Path FRC, Howles SA, Babinsky VN et al. Mutations affecting G-protein subunit α11 in hypercalcemia and hypocalcemia. N Engl J Med 2013; 368: 2476–2486.

    Article  CAS  Google Scholar 

  21. Nakata A, Urano D, Nakata A, Urano D, Fujii-Kuriyama Y, Mizuno N et al. G-protein signaling negatively regulates the stability of aryl hydrocarbon receptor. EMBO Rep 2009; 10: 622–628.

    Article  CAS  Google Scholar 

  22. Jiang LI, Collins J, Davis R, Lin KM, DeCamp D, Roach T et al. Use of a cAMP BRET sensor to characterize a novel regulation of cAMP by the sphingosine 1-phosphate/G13 pathway. J Biol Chem 2007; 282: 10576–10584.

    Article  CAS  Google Scholar 

  23. Jiang LI, Collins J, Davis R, Fraser ID, Sternweis PC . Regulation of cAMP responses by the G12/13 pathway converges on adenylyl cyclase VII. J Biol Chem 2008; 283: 23429–23439.

    Article  CAS  Google Scholar 

  24. Raitila A, Lehtonen HJ, Arola J, Heliövaara E, Ahlsten M, Georgitsi M et al. Mice with inactivation of aryl hydrocarbon receptor interacting protein (Aip) display complete penetrance of pituitary adenomas with aberrant ARNT expression. Am J Pathol 2010; 177: 1969–1976.

    Article  CAS  Google Scholar 

  25. Heliövaara E, Raitila A, Launonen V, Paetau A, Arola J, Lehtonen H et al. The expression of AIP-related molecules in elucidation of cellular pathways in pituitary adenomas. Am J Pathol 2009; 175: 2501–2507.

    Article  Google Scholar 

  26. Omori K, Kotera J . Overview of PDEs and their regulation. Circ Res 2007; 100: 309–327.

    Article  CAS  Google Scholar 

  27. Liu YF, Ghahremani H, Rasenick MM, Jakobs KH, Albert PR . Stimulation of cAMP synthesis by Gi-coupled receptors upon ablation of distinct Gαi protein expression. J Biol Chem 1999; 274: 16444–16450.

    Article  CAS  Google Scholar 

  28. Nürnberg B . Classification and functional properties of Gα subunits. The nature reviews drug discovery GPCR questionnaire participants. The state of GPCR research in 2004. Nat Rev Drug Discov 2004; 575: 577–626.

    Google Scholar 

  29. Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K et al. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 2001; 22: 153–183.

    CAS  Google Scholar 

  30. Lania A, Filopanti M, Corbetta S, Losa M, Ballaré E, Beck-Peccoz P et al. Effects of hypothalamic neuropeptides on extracellular signal-regulated kinase (ERK1 and ERK2) cascade in human tumoral pituitary cells. J Clin Endocrinol Metab 2003; 88: 1692–1696.

    Article  CAS  Google Scholar 

  31. Sunahara RK, Dessauer CW, Gilman AG . Complexity and diversity of mammalian adenylyl cyclases. Annu Rev Pharmacol Toxicol 1996; 36: 461–480.

    Article  CAS  Google Scholar 

  32. Stefan E, Malleshaiah MK, Breton B, Ear PH, Bachmann V, Beyermann M et al. PKA regulatory subunits mediated synergy among conserved G-protein-coupled receptor cascades. Nat Commun 2011; 2: 598.

    Article  Google Scholar 

  33. Vlotides G, Siegel E, Donangelo I, Gutman S, Ren SG, Melmed S . Rat prolactinoma cell growth regulation by epidermal growth factor receptor ligands. Cancer Res 2008; 68: 6377–6386.

    Article  CAS  Google Scholar 

  34. Peri A, Conforti B, Baglioni-Peri S, Luciani P, Cioppi F, Buci L et al. Expression of cyclic adenosine 3′,5′-monophosphate (cAMP)-responsive element binding protein and inducible-cAMP early repressor genes in growth hormone-secreting pituitary adenomas with or without mutations of the Gsalpha gene. J Clin Endocrinol Metab 2001; 86: 2111–2117.

    CAS  PubMed  Google Scholar 

  35. Beavo JA, Brunton LL . Cyclic nucleotide research-still expanding after half a century. Nat Rev Mol Cell Biol 2002; 3: 710–718.

    Article  CAS  Google Scholar 

  36. Malbon CC . G proteins in development. Nat Rev Moll Cell Biol 2005; 6: 689–701.

    Article  CAS  Google Scholar 

  37. Nürnberg B, Gudermann T, Schultz G . Receptors and G proteins as primary components of transmembrane signal transduction. Part 2G proteins: structure and function. J Mol Med 1995; 73: 123–132.

    Article  Google Scholar 

  38. Gohla A, Klement K, Piekorz RP, Pexa K, vom Dahl S, Spicher K et al. An obligatory requirement for the heterotrimeric G protein Gi3 in the antiautophagic action of insulin in the liver. Proc Natl Acad Sci USA 2007; 104: 3003–3008.

    Article  CAS  Google Scholar 

  39. Lappano R, Maggiolini M . G protein-coupled receptors: novel targets for drug discovery in cancer. Nature Rev 2011; 10: 47–60.

    CAS  Google Scholar 

  40. Beckers A, Aaltonen LA, Daly AF, Karhu A . Familial isolated pituitary adenomas (FIPA) and the pituitary adenoma predisposition due to mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene. Endocr Rev 2013; 34: 239–277.

    Article  CAS  Google Scholar 

  41. Bolger GB, Peden AH, Steele MR, MacKenzie C, McEwan DG, Wallace DA et al. Attenuation of the activity of the cAMP-specific phosphodiesterase PDE4A5 by interaction with the immunophilin XAP2. J Biol Chem 2003; 278: 33351–33363.

    Article  CAS  Google Scholar 

  42. de Oliveira SK, Hoffmeister M, Gambaryan S, Muller-Esterl W, Guimaraes JA, Smolenski AP . Phosphodiesterase 2A forms a complex with the co-chaperone XAP2 and regulates nuclear translocation of the aryl hydrocarbon receptor. J Biol Chem 2007; 282: 13656–13663.

    Article  Google Scholar 

  43. Formosa R, Xuereb-Anastasi A, Vassallo J . AIP regulates cAMP signalling and growth hormone secretion in GH3 cells. Endocr Relat Cancer 2013; 20: 495–505.

    Article  CAS  Google Scholar 

  44. Kimura T, Van Keymeulen A, Golstein J, Fusco A, Dumont JE, Roger PP . Regulation of thyroid cell proliferation by TSH and other factors: a critical evaluation of in vitro models. Endocr Rev 2001; 22: 631–656.

    Article  CAS  Google Scholar 

  45. Moran TB, Brannick KE, Raetzman LT . Aryl-hydrocarbon receptor activity modulates prolactin expression in the pituitary. Toxicol Appl Pharmacol 2012; 265: 139–145.

    Article  CAS  Google Scholar 

  46. Birnbaumer L . Receptor-to-effector signaling through G proteins: roles for beta gamma dimers as well as alpha subunits. Cell 1992; 71: 1069–1072.

    Article  CAS  Google Scholar 

  47. Zatelli MC, Piccin D, Tagliati F, Ambrosio MR, Margutti A, Padovani R et al. Somatostatin receptor subtype 1 selective activation in human growth hormone (GH)- and prolactin (PRL)-secreting pituitary adenomas: effects on cell viability, GH, and PRL secretion. Clin Endocrinol Metab 2003; 88: 2797–2802.

    Article  CAS  Google Scholar 

  48. Ben-Shlomo A, Melmed S . Pituitary somatostatin receptor signaling. Trends Endocrinol Metab 2010; 21: 123–133.

    Article  CAS  Google Scholar 

  49. Gueorguiev M, Grossman AB . A new therapeutic era for pituitary tumors. Nat Rev Endocrinol 2011; 7: 71–73.

    Article  CAS  Google Scholar 

  50. Chahal HS, Trivellin G, Leontiou CA, Alband N, Fowkes RC, Tahir A et al. Somatostatin analogs modulate AIP in somatotroph adenomas: the role of the ZAC1 pathway. J Clin Endocrinol Metab 2012; 97: E1411–E1420.

    Article  CAS  Google Scholar 

  51. Liu FY, Jakobs KH, Rasenick MM, Albert PR . G protein specificity in receptor-effector coupling. Analysis of the roles of G0 and Gi2 in GH4C1 pituitary cells. J Biol Chem 1994; 269: 13880–13886.

    CAS  PubMed  Google Scholar 

  52. Stork PJ, Schmitt JM . Crosstalk between cAMP and MAP kinase signaling in the regulation of cell proliferation. Trends Cell Biol 2002; 12: 258–266.

    Article  CAS  Google Scholar 

  53. Sandrini F, Stratakis C . Clinical and molecular genetics of primary pigmented nodular adrenocortical disease. Arq Bras Endocrinol Metab 2004; 48: 637–641.

    Article  Google Scholar 

  54. Caunt CJ, Finch AR, Sedgley KR, McArdle CA . Seven-transmembrane receptor signalling and ERK compartmentalization. Trends Endocrinol Metab 2006; 17: 276–283.

    Article  CAS  Google Scholar 

  55. van Biesen T, Luttrell LM, Hawes BE, Lefkowitz RJ . Mitogenic signaling via G protein-coupled receptors. Endoc Rev 1996; 17: 698–714.

    Article  CAS  Google Scholar 

  56. Lahlou H, Saint-Laurent N, Esteve JP, Eychene A, Pradayrol L, Pyronnet S et al. Sst2 somatostatin receptor inhibits cell proliferation through Ras-, Rap1-, and B-Raf-dependent ERK2 activation. J Biol Chem 2003; 278: 39356–39371.

    Article  CAS  Google Scholar 

  57. Ben-Shlomo A, Pichurin O, Barshop NJ, Wawrowsky KA, Taylor J, Culler MD et al. Selective regulation of somatostatin receptor subtype signaling: evidence for constitutive receptor activation. Mol Endocrinol 2007; 10: 2565–2578.

    Article  Google Scholar 

  58. Grant M, Alturaihi H, Jaquet P, Collier B, Kumar U . Cell growth inhibition and functioning of human somatostatin receptor type 2 are modulated by receptor heterodimerization. Mol Endocrinol 2008; 22: 2278–2292.

    Article  CAS  Google Scholar 

  59. Lonze BE, Ginty DD . Function and regulation of CREB family transcription factors in the nervous system. Neuron 2002; 35: 605–623.

    Article  CAS  Google Scholar 

  60. Hagiwara M, Alberts A, Brindle P, Meinkoth J, Feramisco J, Deng T et al. Transcriptional attenuation following cAMP induction requires PP-1-mediated dephosphorylation of CREB. Cell 1992; 70: 105–113.

    Article  CAS  Google Scholar 

  61. Kornhauser JM, Cowan CW, Shaywitz AJ, Dolmetsch RE, Griffith EC, Hu LS et al. CREB transcriptional activity in neurons is regulated by multiple, calcium-specific phosphorylation events. Neuron 2002; 34: 221–233.

    Article  CAS  Google Scholar 

  62. Benjamini Y, Hochberg Y . Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc Series B (Methodological) 1995; 57: 289–300.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Inga-Lill Svedberg, Mairi Kuris, Alison Ollikainen and Iina Vuoristo for technical assistance. The Biomedicum Imaging Unit is acknowledged for the microscopy service and the Biomedicum Functional Genomics Unit (FuGU) for expression array and virus core services. This study was supported by the Academy of Finland (250345), the Cancer Society of Finland (4700325), the Novo Nordisk Foundation (A14582) and the Association for International Cancer Research (13–1075). This work was supported in part by the Novo Nordisk Foundation (AK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Karhu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuominen, I., Heliövaara, E., Raitila, A. et al. AIP inactivation leads to pituitary tumorigenesis through defective Gαi-cAMP signaling. Oncogene 34, 1174–1184 (2015). https://doi.org/10.1038/onc.2014.50

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.50

This article is cited by

Search

Quick links