Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

LKB1 reduces ROS-mediated cell damage via activation of p38

Subjects

Abstract

Liver kinase B1 (LKB1, also known as serine/threonine kinase 11, STK11) is a tumor suppressor mutated in Peutz–Jeghers syndrome and in a variety of sporadic cancers. Herein, we demonstrate that LKB1 controls the levels of intracellular reactive oxygen species (ROS) and protects the genome from oxidative damage. Cells lacking LKB1 exhibit markedly increased intracellular ROS levels, excessive oxidation of DNA, increased mutation rates and accumulation of DNA damage, which are effectively prevented by ectopic expression of LKB1 and by incubation with antioxidant N-acetylcysteine. The role of LKB1 in suppressing ROS is independent of AMP-activated protein kinase, a canonical substrate of LKB1. Instead, under the elevated ROS, LKB1 binds to and maintains the activity of the cdc42–PAK1 (p21-activated kinase 1) complex, which triggers the activation of p38 and its downstream signaling targets, such as ATF-2, thereby enhancing the activity of superoxide dismutase-2 and catalase, two antioxidant enzymes that protect the cells from ROS accumulation, DNA damage and loss of viability. Our results provide a new paradigm for a non-canonical tumor suppressor function of LKB1 and highlight the importance of targeting ROS signaling as a potential therapeutic strategy for cancer cells lacking LKB1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Hemminki A, Markie D, Tomlinson I, Avizienyte E, Roth S, Loukola A et al. A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature 1998; 391: 184–187.

    Article  CAS  PubMed  Google Scholar 

  2. Alessi DR, Sakamoto K, Bayascas JR . LKB1-dependent signaling pathways. Annu Rev Biochem 2006; 75: 137–163.

    Article  CAS  PubMed  Google Scholar 

  3. Sanchez-Cespedes M . A role for LKB1 gene in human cancer beyond the Peutz-Jeghers syndrome. Oncogene 2007; 26: 7825–7832.

    Article  CAS  PubMed  Google Scholar 

  4. Ji H, Ramsey MR, Hayes DN, Fan C, McNamara K, Kozlowski P et al. LKB1 modulates lung cancer differentiation and metastasis. Nature 2007; 448: 807–810.

    Article  CAS  PubMed  Google Scholar 

  5. Wingo SN, Gallardo TD, Akbay EA, Liang MC, Contreras CM, Boren T et al. Somatic LKB1 mutations promote cervical cancer progression. PLoS ONE 2009; 4: e5137.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gu Y, Lin S, Li JL, Nakagawa H, Chen Z, Jin B et al. Altered LKB1/CREB-regulated transcription co-activator (CRTC) signaling axis promotes esophageal cancer cell migration and invasion. Oncogene 2012; 31: 469–479.

    Article  CAS  PubMed  Google Scholar 

  7. Bardeesy N, Sinha M, Hezel AF, Signoretti S, Hathaway NA, Sharpless NE et al. Loss of the Lkb1 tumour suppressor provokes intestinal polyposis but resistance to transformation. Nature 2002; 419: 162–167.

    Article  CAS  PubMed  Google Scholar 

  8. Shackelford DB, Shaw RJ . The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer 2009; 9: 563–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gan B, Hu J, Jiang S, Liu Y, Sahin E, Zhuang L et al. Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells. Nature 2010; 468: 701–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gurumurthy S, Xie SZ, Alagesan B, Kim J, Yusuf RZ, Saez B et al. The Lkb1 metabolic sensor maintains haematopoietic stem cell survival. Nature 2010; 468: 659–663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nakada D, Saunders TL, Morrison SJ . Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature 2010; 468: 653–658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hawley SA, Boudeau J, Reid JL, Mustard KJ, Udd L, Mäkelä TP et al. Complexes between the LKB1 tumor suppressor, STRADα/β and MO25α/β are upstream kinases in the AMP-activated protein kinase cascade. J Biol 2003; 2: 28.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Woods A, Johnstone SR, Dickerson K, Leiper FC, Fryer LG, Neumann D et al. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol 2003; 13: 2004–2008.

    Article  CAS  PubMed  Google Scholar 

  14. Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, DePinho RA et al. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci USA 2004; 101: 3329–3335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lizcano JM, Göransson O, Toth R, Deak M, Morrice NA, Boudeau J et al. LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J 2004; 23: 833–843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Laderoute KR, Amin K, Calaoagan JM, Knapp M, Le T, Orduna J et al. 5'-AMP-activated protein kinase (AMPK) is induced by low-oxygen and glucose deprivation conditions found in solid-tumor microenvironments. Mol Cell Biol 2006; 26: 5336–5347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liang J, Shao SH, Xu ZX, Hennessy B, Ding Z, Larrea M et al. The energy sensing LKB1-AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis. Nat Cell Biol 2007; 9: 218–224.

    Article  CAS  PubMed  Google Scholar 

  18. Zhao RX, Xu ZX . Targeting the LKB1 tumor suppressor. Curr Drug Targets 2014; 15: 32–52.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y et al. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell 2005; 18: 283–293.

    Article  CAS  PubMed  Google Scholar 

  20. Ui A, Ogiwara H, Nakajima S, Kanno S, Watanabe R, Harata M et al. Possible involvement of LKB1-AMPK signaling in non-homologous end joining. Oncogene 2014; 33: 1640–1648.

    Article  CAS  PubMed  Google Scholar 

  21. Trachootham D, Alexandre J, Huang P . Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach?. Nat Rev Drug Discov 2009; 8: 579–591.

    Article  CAS  PubMed  Google Scholar 

  22. Renschler MF . The emerging role of reactive oxygen species in cancer therapy. Eur J Cancer 2004; 40: 1934–1940.

    Article  CAS  PubMed  Google Scholar 

  23. Halliwell B . Oxidative stress and cancer: have we moved forward? Biochem J 2007; 401: 1–11.

    Article  CAS  PubMed  Google Scholar 

  24. Ray PD, Huang BW, Tsuji Y . Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 2012; 24: 981–990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sablina AA, Budanov AV, Ilyinskaya GV, Agapova LS, Kravchenko JE, Chumakov PM . The antioxidant function of the p53 tumor suppressor. Nat Med 2005; 11: 1306–1313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Montero J, Dutta C, van Bodegom D, Weinstock D, Letai A . p53 regulates a non-apoptotic death induced by ROS. Cell Death Differ 2013; 20: 1465–1474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jimenez AI, Fernandez P, Dominguez O, Dopazo A, Sanchez-Cespedes M . Growth and molecular profile of lung cancer cells expressing ectopic LKB1: down-regulation of the phosphatidylinositol 3'-phosphate kinase/PTEN pathway. Cancer Res 2003; 63: 1382–1388.

    CAS  PubMed  Google Scholar 

  28. Luo J, Emanuele MJ, Li D, Creighton CJ, Schlabach MR, Westbrook TF et al. A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell 2009; 137: 835–848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Huang P, Feng L, Oldham EA, Keating MJ, Plunkett W . Superoxide dismutase as a target for the selective killing of cancer cells. Nature 2000; 407: 390–395.

    Article  CAS  PubMed  Google Scholar 

  30. Li XN, Song J, Zhang L, LeMaire SA, Hou X, Zhang C et al. Activation of the AMPK-FOXO3 pathway reduces fatty acid-induced increase in intracellular reactive oxygen species by upregulating thioredoxin. Diabetes 2010; 58: 2246–2257.

    Article  Google Scholar 

  31. Dolado I, Swat A, Ajenjo N, De Vita G, Cuadrado A, Nebreda AR . p38alpha MAP kinase as a sensor of reactive oxygen species in tumorigenesis. Cancer Cell 2007; 11: 191–205.

    Article  CAS  PubMed  Google Scholar 

  32. Gutiérrez-Uzquiza Á, Arechederra M, Bragado P, Aguirre-Ghiso JA, Porras A . p38 alpha mediates cell survival in response to oxidative stress via induction of antioxidant genes: effect on the p70S6K pathway. J Biol Chem 2012; 287: 2632–2642.

    Article  PubMed  Google Scholar 

  33. Hsieh CC, Kuro-o M, Rosenblatt KP, Brobey R, Papaconstantinou J . The ASK1-Signalosome regulates p38 MAPK activity in response to levels of endogenous oxidative stress in the Klotho mouse models of aging. Aging (Albany NY) 2010; 2: 597–611.

    Article  CAS  Google Scholar 

  34. Baas AF, Boudeau J, Sapkota GP, Smit L, Medema R, Morrice NA et al. Activation of the tumour suppressor kinase LKB1 by the STE20-like pseudokinase STRAD. EMBO J 2003; 22: 3062–3072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cuadrado A, Nebreda AR . Mechanisms and functions of p38 MAPK signaling. Biochem J 2010; 429: 403–417.

    Article  CAS  PubMed  Google Scholar 

  36. Zarubin T, Han J . Activation and signaling of the p38 MAP kinase pathway. Cell Research 2005; 15: 11–18.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang S, Han J, Sells MA, Chernoff J, Knaus UG, Ulevitch RJ et al. Rho family GTPases regulate p38 MAP kinase through the downstream mediator Pak1. J Biol Chem 1995; 270: 23934–23936.

    Article  CAS  PubMed  Google Scholar 

  38. Bagrodia S, Derijard B, Davis RJ, Cerione RA . Cdc42 and PAK-mediated signaling leads to Jun kinase and p38 mitogen-activated protein kinase activation. J Biol Chem 1995; 270: 27995–27998.

    Article  CAS  PubMed  Google Scholar 

  39. Tibbles LA, Ing YL, Kiefer F, Chan J, Iscove N, Woodgett JR et al. MLK-3 activates the SAPK/JNK and p38/RK pathways via SEK1 and MKK3/6. EMBO J 1996; 15: 7026–7035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Martin GA, Bollag G, McCormick F, Abo A . A novel serine kinase activated by rac1/CDC42Hs-dependent autophosphorylation is related to PAK65 and STE20. EMBO J 1995; 14: 1970–1978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Manser E, Leung T, Salihuddin H, Zhao Z, Lim L . A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature 1994; 367: 40–46.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang S, Schafer-Hales K, Khuri FR, Zhou W, Vertino PM, Marcus AI . The tumor suppressor LKB1 regulates lung cancer cell polarity by mediating cdc42 recruitment and activity. Cancer Res 2008; 68: 740–748.

    Article  CAS  PubMed  Google Scholar 

  43. Cao X, Rui L, Pennington PR, Chlan-Fourney J, Jiang Z, Wei Z et al. Serine 209 resides within a putative p38(MAPK) consensus motif and regulates monoamine oxidase-A activity. J Neurochem 2009; 111: 101–110.

    Article  CAS  PubMed  Google Scholar 

  44. Archer H, Bar-Sagi D . Ras and Rac as activators of reactive oxygen species (ROS). Methods Mol Biol 2002; 189: 67–73.

    CAS  PubMed  Google Scholar 

  45. Raj L, Ide T, Gurkar AU, Foley M, Schenone M, Li X et al. Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature 2011; 475: 231–234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Adams DJ, Dai M, Pellegrino G, Wagner BK, Stern AM, Shamji AF et al. Synthesis, cellular evaluation, and mechanism of action of piperlongumine analogs. Proc Natl Acad Sci USA 2012; 109: 15115–15120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang Y, Wang JW, Xiao X, Shan Y, Xue B, Jiang G et al. Piperlongumine induces autophagy by targeting p38 signaling. Cell Death Dis 2013; 4: e824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Faubert B, Boily G, Izreig S, Griss T, Samborska B, Dong Z et al. AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab 2013; 17: 113–124.

    Article  CAS  PubMed  Google Scholar 

  49. Alexander A, Cai SL, Kim J, Nanez A, Sahin M, MacLean KH et al. ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proc Natl Acad Sci USA 2010; 107: 4153–4158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sen P, Chakraborty PK, Raha S . p38 mitogen-activated protein kinase (p38MAPK) upregulates catalase levels in response to low dose H2O2 treatment through enhancement of mRNA stability. FEBS Lett 2005; 579: 4402–4406.

    Article  CAS  PubMed  Google Scholar 

  51. Shackelford DB, Abt E, Gerken L, Vasquez DS, Seki A, Leblanc M et al. LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin. Cancer Cell 2013; 23: 143–158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xiao X, He Q, Lu C, Werle KD, Zhao RX, Chen J et al. Metformin impairs the growth of liver kinase B1-intact cervical cancer cells. Gynecol Oncol 2012; 127: 249–255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pan J, She M, Xu ZX, Sun L, Yeung SC . Farnesyltransferase inhibitors induce DNA damage via reactive oxygen species in human cancer cells. Cancer Res 2005; 65: 3671–3681.

    Article  CAS  PubMed  Google Scholar 

  54. Slaughter MR, O’Brien PJ . Fully-automated spectrophotometric method for measurement of antioxidant activity of catalase. Clin Biochem 2000; 33: 525–534.

    Article  CAS  PubMed  Google Scholar 

  55. Madesh M, Balasubramanian KA . Microtiter plate assay for superoxide dismutase using MTT reduction by superoxide. Indian J Biochem Biophys 1998; 35: 184–188.

    CAS  PubMed  Google Scholar 

  56. Jian W, Xu HG, Chen J, Xu ZX, Levitt JM, Stanley JA et al. Activity of CEP-9722, a poly (ADP-ribose) polymerase inhibitor, in urothelial carcinoma correlates inversely with homologous recombination repair response to DNA damage. Anticancer Drugs 2014; 25: 878–886.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Mousseau at University of Saskatchewan for providing p38-WT, CA and DN constructs; Dr Laderoute at SRI International for providing WT and AMPK-null MEFs; Dr Frazier at University of Texas MD Cancer Center for providing the LKB1-null cells; Dr Lizhong Wang from University of Alabama at Birmingham for providing WT and LKB1fl/fl MEFs. This work was supported by grants from National Cancer Institute R01CA133053 (ZXX) and the National 863 Program #2004AA205020 and the National Natural Science Foundation of China #30700872 (YLL).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y-L Li or Z-X Xu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, HG., Zhai, YX., Chen, J. et al. LKB1 reduces ROS-mediated cell damage via activation of p38. Oncogene 34, 3848–3859 (2015). https://doi.org/10.1038/onc.2014.315

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.315

This article is cited by

Search

Quick links