Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

TRIM24 links glucose metabolism with transformation of human mammary epithelial cells

Abstract

Tripartite motif 24 protein (TRIM24) is a plant homeodomain/bromodomain histone reader, recently associated with poor overall survival of breast-cancer patients. At a molecular level, TRIM24 is a negative regulator of p53 levels and a co-activator of estrogen receptor. However, the role of TRIM24 in breast tumorigenesis remains largely unknown. We used an isogenic human mammary epithelial cell (HMEC) culture model, derived from reduction mammoplasty tissue, and found that ectopic expression of TRIM24 in immortalized HMECs (TRIM24 iHMECs) greatly increased cellular proliferation and induced malignant transformation. Subcutaneous injection of TRIM24 iHMECs in nude mice led to growth of intermediate to high-grade tumors in 60–70% of mice. Molecular analysis of TRIM24 iHMECs revealed a glycolytic and tricarboxylic acid cycle gene signature, alongside increased glucose uptake and activated aerobic glycolysis. Collectively, these results identify a role for TRIM24 in breast tumorigenesis through reprogramming of glucose metabolism in HMECs, further supporting TRIM24 as a viable therapeutic target in breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Hatakeyama S . TRIM proteins and cancer. Nat Rev Cancer 2011; 11: 792–804.

    Article  CAS  PubMed  Google Scholar 

  2. Allton K, Jain AK, Herz HM, Tsai WW, Jung SY, Qin J et al. Trim24 targets endogenous p53 for degradation. Proc Natl Acad Sci USA 2009; 106: 11612–11616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jain AK, Allton K, Iacovino M, Mahen E, Milczarek RJ, Zwaka TP et al. p53 regulates cell cycle and microRNAs to promote differentiation of human embryonic stem cells. PLoS Biol 2012; 10: e1001268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tsai WW, Wang Z, Yiu TT, Akdemir KC, Xia W, Winter S et al. TRIM24 links a non-canonical histone signature to breast cancer. Nature 2010; 468: 927–932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chambon M, Orsetti B, Berthe ML, Bascoul-Mollevi C, Rodriguez C, Duong V et al. Prognostic significance of TRIM24/TIF-1alpha gene expression in breast cancer. Am J Pathol 2011; 178: 1461–1469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ward PS, Thompson CB . Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 2012; 21: 297–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schulze A, Harris AL . How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature 2012; 491: 364–373.

    Article  CAS  PubMed  Google Scholar 

  8. Jones RG, Thompson CB . Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev 2009; 23: 537–548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB . The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 2008; 7: 11–20.

    Article  CAS  PubMed  Google Scholar 

  10. Chen JQ, Russo J . Dysregulation of glucose transport, glycolysis, TCA cycle and glutaminolysis by oncogenes and tumor suppressors in cancer cells. Biochim Biophys Acta 2012; 1826: 370–384.

    CAS  PubMed  Google Scholar 

  11. Hanahan D, Weinberg RA . The hallmarks of cancer. Cell 2000; 100: 57–70.

    Article  CAS  PubMed  Google Scholar 

  12. Garbe JC, Bhattacharya S, Merchant B, Bassett E, Swisshelm K, Feiler HS et al. Molecular distinctions between stasis and telomere attrition senescence barriers shown by long-term culture of normal human mammary epithelial cells. Cancer Res 2009; 69: 7557–7568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stampfer MR, Bartley JC . Induction of transformation and continuous cell lines from normal human mammary epithelial cells after exposure to benzo[a]pyrene. Proc Natl Acad Sci USA 1985; 82: 2394–2398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stampfer MR, Garbe J, Nijjar T, Wigington D, Swisshelm K, Yaswen P . Loss of p53 function accelerates acquisition of telomerase activity in indefinite lifespan human mammary epithelial cell lines. Oncogene 2003; 22: 5238–5251.

    Article  CAS  PubMed  Google Scholar 

  15. Novak P, Jensen TJ, Garbe JC, Stampfer MR, Futscher BW . Stepwise DNA methylation changes are linked to escape from defined proliferation barriers and mammary epithelial cell immortalization. Cancer Res 2009; 69: 5251–5258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Brenner AJ, Stampfer MR, Aldaz CM . Increased p16 expression with first senescence arrest in human mammary epithelial cells and extended growth capacity with p16 inactivation. Oncogene 1998; 17: 199–205.

    Article  CAS  PubMed  Google Scholar 

  17. Garbe JC, Holst CR, Bassett E, Tlsty T, Stampfer MR . Inactivation of p53 function in cultured human mammary epithelial cells turns the telomere-length dependent senescence barrier from agonescence into crisis. Cell Cycle 2007; 6: 1927–1936.

    Article  CAS  PubMed  Google Scholar 

  18. Stampfer MR, Yaswen P . Culture models of human mammary epithelial cell transformation. J Mammary Gland Biol Neoplasia 2000; 5: 365–378.

    Article  CAS  PubMed  Google Scholar 

  19. Stampfer MR, Yaswen P . Human epithelial cell immortalization as a step in carcinogenesis. Cancer Lett 2003; 194: 199–208.

    Article  CAS  PubMed  Google Scholar 

  20. Stampfer M, LaBarge M, Garbe J . An integrated human mammary epithelial cell culture system for studying carcinogenesis and aging. In: Schatten H (ed) Cell and Molecular Biology of Breast Cancer. Humana Press, New York, NY, USA, 2013, pp 323–361.

    Chapter  Google Scholar 

  21. Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 2009; 27: 1160–1167.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Pierce JH, Arnstein P, DiMarco E, Artrip J, Kraus MH, Lonardo F et al. Oncogenic potential of erbB-2 in human mammary epithelial cells. Oncogene 1991; 6: 1189–1194.

    CAS  PubMed  Google Scholar 

  23. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102: 15545–15550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ferrick DA, Neilson A, Beeson C . Advances in measuring cellular bioenergetics using extracellular flux. Drug Discov Today 2008; 13: 268–274.

    Article  CAS  PubMed  Google Scholar 

  25. Diers AR, Broniowska KA, Chang CF, Hogg N . Pyruvate fuels mitochondrial respiration and proliferation of breast cancer cells: effect of monocarboxylate transporter inhibition. Biochem J 2012; 444: 561–571.

    Article  CAS  PubMed  Google Scholar 

  26. Lee E, Koskimaki JE, Pandey NB, Popel AS . Inhibition of lymphangiogenesis and angiogenesis in breast tumor xenografts and lymph nodes by a peptide derived from transmembrane protein 45A. Neoplasia 2013; 15: 112–124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Milke L, Schulz K, Weigert A, Sha W, Schmid T, Brune B . Depletion of tristetraprolin in breast cancer cells increases interleukin-16 expression and promotes tumor infiltration with monocytes/macrophages. Carcinogenesis 2013; 34: 850–857.

    Article  CAS  PubMed  Google Scholar 

  28. Zhao JJ, Liu Z, Wang L, Shin E, Loda MF, Roberts TM . The oncogenic properties of mutant p110alpha and p110beta phosphatidylinositol 3-kinases in human mammary epithelial cells. Proc Natl Acad Sci USA 2005; 102: 18443–18448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Arteaga CL, Sliwkowski MX, Osborne CK, Perez EA, Puglisi F, Gianni L . Treatment of HER2-positive breast cancer: current status and future perspectives. Nat Rev Clin Oncol 2012; 9: 16–32.

    Article  CAS  Google Scholar 

  30. Werner H, Bruchim I . IGF-1 and BRCA1 signalling pathways in familial cancer. Lancet Oncol 2012; 13: e537–e544.

    Article  CAS  PubMed  Google Scholar 

  31. Zhu C, Qi X, Chen Y, Sun B, Dai Y, Gu Y . PI3K/Akt and MAPK/ERK1/2 signaling pathways are involved in IGF-1-induced VEGF-C upregulation in breast cancer. J Cancer Res Clin Oncol 2011; 137: 1587–1594.

    Article  CAS  PubMed  Google Scholar 

  32. Koppenol WH, Bounds PL, Dang CV . Otto Warburg's contributions to current concepts of cancer metabolism. Nat Rev Cancer 2011; 11: 325–337.

    Article  CAS  PubMed  Google Scholar 

  33. Kroemer G, Pouyssegur J . Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell 2008; 13: 472–482.

    Article  CAS  PubMed  Google Scholar 

  34. Vander Heiden MG, Cantley LC, Thompson CB . Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009; 324: 1029–1033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fritz V, Fajas L . Metabolism and proliferation share common regulatory pathways in cancer cells. Oncogene 2010; 29: 4369–4377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zheng J . Energy metabolism of cancer: Glycolysis versus oxidative phosphorylation (Review). Oncol Lett 2012; 4: 1151–1157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hsu PP, Sabatini DM . Cancer cell metabolism: Warburg and beyond. Cell 2008; 134: 703–707.

    Article  CAS  PubMed  Google Scholar 

  38. Scott DA, Richardson AD, Filipp FV, Knutzen CA, Chiang GG, Ronai ZA et al. Comparative metabolic flux profiling of melanoma cell lines: beyond the Warburg effect. J Biol Chem 2011; 286: 42626–42634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lim HY, Ho QS, Low J, Choolani M, Wong KP . Respiratory competent mitochondria in human ovarian and peritoneal cancer. Mitochondrion 2011; 11: 437–443.

    Article  CAS  PubMed  Google Scholar 

  40. Smolkova K, Plecita-Hlavata L, Bellance N, Benard G, Rossignol R, Jezek P . Waves of gene regulation suppress and then restore oxidative phosphorylation in cancer cells. Int J Biochem Cell Biol 2011; 43: 950–968.

    Article  CAS  PubMed  Google Scholar 

  41. Jose C, Bellance N, Rossignol R . Choosing between glycolysis and oxidative phosphorylation: a tumor's dilemma? Biochim Biophys Acta 2011; 1807: 552–561.

    Article  CAS  PubMed  Google Scholar 

  42. Vazquez F, Lim JH, Chim H, Bhalla K, Girnun G, Pierce K et al. PGC1alpha expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress. Cancer Cell 2013; 23: 287–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 2009; 458: 762–765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zaugg K, Yao Y, Reilly PT, Kannan K, Kiarash R, Mason J et al. Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress. Genes Dev 2011; 25: 1041–1051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Moreno-Sanchez R, Rodriguez-Enriquez S, Marin-Hernandez A, Saavedra E . Energy metabolism in tumor cells. FEBS J 2007; 274: 1393–1418.

    Article  CAS  PubMed  Google Scholar 

  46. Chen M, Zhang J, Li N, Qian Z, Zhu M, Li Q et al. Promoter hypermethylation mediated downregulation of FBP1 in human hepatocellular carcinoma and colon cancer. PLoS ONE 2011; 6: e25564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Goel A, Mathupala SP, Pedersen PL . Glucose metabolism in cancer. Evidence that demethylation events play a role in activating type II hexokinase gene expression. J Biol Chem 2003; 278: 15333–15340.

    Article  CAS  PubMed  Google Scholar 

  48. Lv L, Li D, Zhao D, Lin R, Chu Y, Zhang H et al. Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. Mol Cell 2011; 42: 719–730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell 2011; 19: 17–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Campeau E, Ruhl VE, Rodier F, Smith CL, Rahmberg BL, Fuss JO et al. A versatile viral system for expression and depletion of proteins in mammalian cells. PLoS ONE 2009; 4: e6529.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Geiss GK, Bumgarner RE, Birditt B, Dahl T, Dowidar N, Dunaway DL et al. Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat Biotechnol 2008; 26: 317–325.

    Article  CAS  PubMed  Google Scholar 

  52. Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC et al. DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 2003; 4: P3.

    Article  PubMed  Google Scholar 

  53. Allred DC, Harvey JM, Berardo M, Clark GM . Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Mod Pathol 1998; 11: 155–168.

    CAS  PubMed  Google Scholar 

  54. Wen H, Li Y, Xi Y, Jiang S, Stratton S, Peng D et al. ZMYND11 links histone H3.3K36me3 to transcription elongation and tumour suppression. Nature 2014; 508: 263–268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Abhinav Jain and Srikanth Appikonda for helpful discussions. Zeynep Coban and Kadir Akdemir for help with Bioinformatic analyses. Lindsey Minter and Joseph Taube for help with Xenograft experiments. This research is supported by grant RP100602 from the Cancer Prevention and Research Initiative of Texas to MCB, the Center for Cancer Epigenetics scholarship to KNT and in part by the MD Anderson Cancer Center Support Grant CA016672.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M C Barton.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathiraja, T., Thakkar, K., Jiang, S. et al. TRIM24 links glucose metabolism with transformation of human mammary epithelial cells. Oncogene 34, 2836–2845 (2015). https://doi.org/10.1038/onc.2014.220

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.220

This article is cited by

Search

Quick links