Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Conditional inactivation of the mouse von Hippel–Lindau tumor suppressor gene results in wide-spread hyperplastic, inflammatory and fibrotic lesions in the kidney

Abstract

Mutations of the tumor suppressor gene von Hippel–Lindau (VHL) can lead to benign and malignant tumors, including clear-cell renal cell carcinoma (ccRCC). To understand the progression of ccRCC, we generated a novel mouse Vhlh conditional knockout, using Hoxb7-driven Cre that is specific for the collecting ducts and a subset of distal tubules. These mice exhibited wide-spread epithelial disruption and interstitial inflammation as early as 2 months of age with high penetrance. Lesions are cystic, show severe fibrosis and display significant hyperplasia. An abundance of infiltrating macrophages and lymphocytes was detected. Interestingly, the Vhlh mutant lesions could be rescued when Hif-1α, but not Hif-2α, was also knocked out. In addition, administration of a JAK1/2 kinase inhibitor alleviated the Vhlh knockout phenotypes. Taken together, these results suggest that HIF-1α-dependent inflammation and fibrosis may be an early event in the development of ccRCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Frew IJ, Krek W . Pvhl: A multipurpose adaptor protein. Sci Signal 2008; 1: pe30.

    Article  Google Scholar 

  2. Hsu T . Complex cellular functions of the von hippel-lindau tumor suppressor gene: Insights from model organisms. Oncogene 2012; 31: 2247–2257.

    Article  CAS  Google Scholar 

  3. Kaelin WG Jr . Treatment of kidney cancer: insights provided by the vhl tumor-suppressor protein. Cancer 2009; 115: 2262–2272.

    Article  CAS  Google Scholar 

  4. Latif F, Tory K, Gnarra J, Yao M, Duh FM, Orcutt ML et al. Identification of the von hippel-lindau disease tumor suppressor gene. Science 1993; 260: 1317–1320.

    Article  CAS  Google Scholar 

  5. Maher ER, Neumann HP, Richard S . Von hippel-lindau disease: a clinical and scientific review. Eur J Hum Genet 2011; 19: 617–623.

    Article  CAS  Google Scholar 

  6. Herman JG, Latif F, Weng Y, Lerman MI, Zbar B, Liu S et al. Silencing of the vhl tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci USA 1994; 91: 9700–9704.

    Article  CAS  Google Scholar 

  7. Kim WY, Kaelin WG . Role of vhl gene mutation in human cancer. J Clin Oncol 2004; 22: 4991–5004.

    Article  CAS  Google Scholar 

  8. Kaelin WG Jr . The von hippel-lindau tumour suppressor protein: O2 sensing and cancer. Nat Rev Cancer 2008; 8: 865–873.

    Article  CAS  Google Scholar 

  9. Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M et al. Hifalpha targeted for vhl-mediated destruction by proline hydroxylation: implications for o2 sensing. Science 2001; 292: 464–468.

    Article  CAS  Google Scholar 

  10. Kaelin WG Jr, Ratcliffe PJ . Oxygen sensing by metazoans: the central role of the hif hydroxylase pathway. Mol Cell 2008; 30: 393–402.

    Article  CAS  Google Scholar 

  11. Rankin EB, Tomaszewski JE, Haase VH . Renal cyst development in mice with conditional inactivation of the von hippel-lindau tumor suppressor. Cancer Res 2006; 66: 2576–2583.

    Article  CAS  Google Scholar 

  12. Frew IJ, Minola A, Georgiev S, Hitz M, Moch H, Richard S et al. Combined vhlh and pten mutation causes genital tract cystadenoma and squamous metaplasia. Mol Cell Biol 2008; 28: 4536–4548.

    Article  CAS  Google Scholar 

  13. Ozcan A, Zhai J, Hamilton C, Shen SS, Ro JY, Krishnan B et al. Pax-2 in the diagnosis of primary renal tumors: Immunohistochemical comparison with renal cell carcinoma marker antigen and kidney-specific cadherin. Am J Clin Pathol 2009; 131: 393–404.

    Article  CAS  Google Scholar 

  14. Kraus S, Abel PD, Nachtmann C, Linsenmann HJ, Weidner W, Stamp GW et al. Muc1 mucin and trefoil factor 1 protein expression in renal cell carcinoma: correlation with prognosis. Hum Pathol 2002; 33: 60–67.

    Article  CAS  Google Scholar 

  15. Khurana KK, Truong LD, Verani RR . Image analysis of proliferating cell nuclear antigen expression and immunohistochemical profiles in renal cell carcinoma associated with acquired cystic kidney disease: Comparison with classic renal cell carcinoma. Mod Pathol 1998; 11: 339–346.

    CAS  PubMed  Google Scholar 

  16. Shen SS, Krishna B, Chirala R, Amato RJ, Truong LD . Kidney-specific cadherin, a specific marker for the distal portion of the nephron and related renal neoplasms. Mod Pathol 2005; 18: 933–940.

    Article  CAS  Google Scholar 

  17. Srinivas S, Goldberg MR, Watanabe T, D'Agati V, al-Awqati Q, Costantini F . Expression of green fluorescent protein in the ureteric bud of transgenic mice: a new tool for the analysis of ureteric bud morphogenesis. Dev Genet 1999; 24: 241–251.

    Article  CAS  Google Scholar 

  18. Yu J, Carroll TJ, McMahon AP . Sonic hedgehog regulates proliferation and differentiation of mesenchymal cells in the mouse metanephric kidney. Development 2002; 129: 5301–5312.

    CAS  Google Scholar 

  19. Zhao H, Kegg H, Grady S, Truong HT, Robinson ML, Baum M et al. Role of fibroblast growth factor receptors 1 and 2 in the ureteric bud. Dev Biol 2004; 276: 403–415.

    Article  CAS  Google Scholar 

  20. Mandriota SJ, Turner KJ, Davies DR, Murray PG, Morgan NV, Sowter HM et al. Hif activation identifies early lesions in vhl kidneys: evidence for site-specific tumor suppressor function in the nephron. Cancer Cell 2002; 1: 459–468.

    Article  CAS  Google Scholar 

  21. Kramann R, Dirocco DP, Humphreys BD . Understanding the origin, activation and regulation of matrix-producing myofibroblasts for treatment of fibrotic disease. J Pathol 2013; 231: 273–289.

    Article  CAS  Google Scholar 

  22. Nakagawa N, Duffield JS . Myofibroblasts in fibrotic kidneys. Curr Pathobiol Rep 2013; 1: 189–198.

    Article  Google Scholar 

  23. Ries C . Cytokine functions of timp-1. Cell Mol Life Sci 2014; 71: 659–672.

    Article  CAS  Google Scholar 

  24. Becker LC . Yin and yang of mcp-1. Circ Res 2005; 96: 812–814.

    Article  CAS  Google Scholar 

  25. Perrier S, Darakhshan F, Hajduch E . Il-1 receptor antagonist in metabolic diseases: Dr jekyll or mr hyde? FEBS Lett 2006; 580: 6289–6294.

    Article  CAS  Google Scholar 

  26. Quintas-Cardama A, Vaddi K, Liu P, Manshouri T, Li J, Scherle PA et al. Preclinical characterization of the selective jak1/2 inhibitor incb018424: therapeutic implications for the treatment of myeloproliferative neoplasms. Blood 2010; 115: 3109–3117.

    Article  CAS  Google Scholar 

  27. Wadleigh M, Tefferi A . Preclinical and clinical activity of atp mimetic jak2 inhibitors. Clin Adv Hematol Oncol 2010; 8: 557–563.

    PubMed  Google Scholar 

  28. Shay JE, Celest Simon M . Hypoxia-inducible factors: crosstalk between inflammation and metabolism. Semin Cell Dev Biol 2012; 23: 389–394.

    Article  CAS  Google Scholar 

  29. Raval RR, Lau KW, Tran MG, Sowter HM, Mandriota SJ, Li JL et al. Contrasting properties of hypoxia-inducible factor 1 (hif-1) and hif-2 in von hippel-lindau-associated renal cell carcinoma. Mol Cell Biol 2005; 25: 5675–5686.

    Article  CAS  Google Scholar 

  30. Martelli F, Ghinassi B, Panetta B, Alfani E, Gatta V, Pancrazzi A et al. Variegation of the phenotype induced by the gata1low mutation in mice of different genetic backgrounds. Blood 2005; 106: 4102–4113.

    Article  CAS  Google Scholar 

  31. Yoshida N, Ikemoto S, Narita K, Sugimura K, Wada S, Yasumoto R et al. Interleukin-6, tumour necrosis factor alpha and interleukin-1beta in patients with renal cell carcinoma. Br J Cancer 2002; 86: 1396–1400.

    Article  CAS  Google Scholar 

  32. An J, Rettig MB . Mechanism of von hippel-lindau protein-mediated suppression of nuclear factor kappa b activity. Mol Cell Biol 2005; 25: 7546–7556.

    Article  CAS  Google Scholar 

  33. Yang H, Minamishima YA, Yan Q, Schlisio S, Ebert BL, Zhang X et al. Pvhl acts as an adaptor to promote the inhibitory phosphorylation of the nf-kappab agonist card9 by ck2. Mol Cell 2007; 28: 15–27.

    Article  Google Scholar 

  34. Wu KL, Miao H, Khan S . Jak kinases promote invasiveness in vhl-mediated renal cell carcinoma by a suppressor of cytokine signaling-regulated, hif-independent mechanism. Am J Physiol Renal Physiol 2007; 293: F1836–F1846.

    Article  CAS  Google Scholar 

  35. Brukamp K, Jim B, Moeller MJ, Haase VH . Hypoxia and podocyte-specific vhlh deletion confer risk of glomerular disease. Am J Physiol Renal Physiol 2007; 293: F1397–F1407.

    Article  CAS  Google Scholar 

  36. Steenhard BM, Isom K, Stroganova L St, John PL, Zelenchuk A, Freeburg PB et al. Deletion of von hippel-lindau in glomerular podocytes results in glomerular basement membrane thickening, ectopic subepithelial deposition of collagen {alpha}1{alpha}2{alpha}1(iv), expression of neuroglobin, and proteinuria. Am J Pathol 2010; 177: 84–96.

    Article  CAS  Google Scholar 

  37. Kimura K, Iwano M, Higgins DF, Yamaguchi Y, Nakatani K, Harada K et al. Stable expression of hif-1alpha in tubular epithelial cells promotes interstitial fibrosis. Am J Physiol Renal Physiol 2008; 295: F1023–F1029.

    Article  CAS  Google Scholar 

  38. Higgins DF, Kimura K, Bernhardt WM, Shrimanker N, Akai Y, Hohenstein B et al. Hypoxia promotes fibrogenesis in vivo via hif-1 stimulation of epithelial-to-mesenchymal transition. J Clin Invest 2007; 117: 3810–3820.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Schietke RE, Hackenbeck T, Tran M, Gunther R, Klanke B, Warnecke CL et al. Renal tubular hif-2alpha expression requires vhl inactivation and causes fibrosis and cysts. PLoS ONE 2012; 7: e31034.

    Article  CAS  Google Scholar 

  40. Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A . Cancer-related inflammation, the seventh hallmark of cancer: Links to genetic instability. Carcinogenesis 2009; 30: 1073–1081.

    Article  CAS  Google Scholar 

  41. Grivennikov SI, Greten FR, Karin M . Immunity, inflammation, and cancer. Cell 2010; 140: 883–899.

    Article  CAS  Google Scholar 

  42. Kraus S, Arber N . Inflammation and colorectal cancer. Curr Opin Pharmacol 2009; 9: 405–410.

    Article  CAS  Google Scholar 

  43. Hussain SP, Hofseth LJ, Harris CC . Radical causes of cancer. Nat Rev Cancer 2003; 3: 276–285.

    Article  CAS  Google Scholar 

  44. Kundu JK, Surh YJ . Emerging avenues linking inflammation and cancer. Free Radic Biol Med 2012; 52: 2013–2037.

    Article  CAS  Google Scholar 

  45. Larkin J, Goh XY, Vetter M, Pickering L, Swanton C . Epigenetic regulation in rcc: opportunities for therapeutic intervention? Nat Rev Urol 2012; 9: 147–155.

    Article  CAS  Google Scholar 

  46. Ibragimova I, Maradeo ME, Dulaimi E, Cairns P . Aberrant promoter hypermethylation of pbrm1, bap1, setd2, kdm6a and other chromatin-modifying genes is absent or rare in clear cell rcc. Epigenetics 2013; 8: 486–493.

    Article  CAS  Google Scholar 

  47. Hakimi AA, Ostrovnaya I, Reva B, Schultz N, Chen YB, Gonen M et al. Adverse outcomes in clear cell renal cell carcinoma with mutations of 3p21 epigenetic regulators bap1 and setd2: a report by mskcc and the kirc tcga research network. Clin Cancer Res 2013; 19: 3259–3267.

    Article  CAS  Google Scholar 

  48. Dalgliesh GL, Furge K, Greenman C, Chen L, Bignell G, Butler A et al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 2010; 463: 360–363.

    Article  CAS  Google Scholar 

  49. Varela I, Tarpey P, Raine K, Huang D, Ong CK, Stephens P et al. Exome sequencing identifies frequent mutation of the swi/snf complex gene pbrm1 in renal carcinoma. Nature 2011; 469: 539–542.

    Article  CAS  Google Scholar 

  50. Kim N, Hong Y, Kwon D, Yoon S . Somatic mutaome profile in human cancer tissues. Genomics Inform 2013; 11: 239–244.

    Article  Google Scholar 

  51. Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C et al. Mutational landscape and significance across 12 major cancer types. Nature 2013; 502: 333–339.

    Article  CAS  Google Scholar 

  52. Mole DR, Blancher C, Copley RR, Pollard PJ, Gleadle JM, Ragoussis J et al. Genome-wide association of hypoxia-inducible factor (hif)-1alpha and hif-2alpha DNA binding with expression profiling of hypoxia-inducible transcripts. J Biol Chem 2009; 284: 16767–16775.

    Article  CAS  Google Scholar 

  53. Haase VH, Glickman JN, Socolovsky M, Jaenisch R . Vascular tumors in livers with targeted inactivation of the von hippel-lindau tumor suppressor. Proc Natl Acad Sci USA 2001; 98: 1583–1588.

    Article  CAS  Google Scholar 

  54. Tuominen VJ, Ruotoistenmaki S, Viitanen A, Jumppanen M, Isola J . Immunoratio: A publicly available web application for quantitative image analysis of estrogen receptor (er), progesterone receptor (pr), and ki-67. Breast Cancer Res 2010; 12: R56.

    Article  Google Scholar 

Download references

Acknowledgements

Paraffin embedding and sectioning were performed at the Immunohistochemistry Core of Boston Medical Center. We thank Richard Near (the Boston University School of Medicine) for technical support and Weining Lu (the Boston University School of Medicine) for a gift of the Hoxb7CreEGFP mouse strain. This work was supported by a grant to TH from the National Institutes of Health, USA (#R01CA109860) and a postdoctoral fellowship to HLB from the National Institutes of Health, USA (#T32HL007501).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Hsu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pritchett, T., Bader, H., Henderson, J. et al. Conditional inactivation of the mouse von Hippel–Lindau tumor suppressor gene results in wide-spread hyperplastic, inflammatory and fibrotic lesions in the kidney. Oncogene 34, 2631–2639 (2015). https://doi.org/10.1038/onc.2014.197

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.197

This article is cited by

Search

Quick links