Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

SIRT1 regulates YAP2-mediated cell proliferation and chemoresistance in hepatocellular carcinoma

Abstract

The MST/YAP (mammalian Ste20-like kinase/Yes-associated protein 2) pathway plays an important role in hepatocellular carcinoma (HCC). Although post-translational modification—especially MST/Lats (large tumor suppressor)-mediated phosphorylation and PP1 (protein phosphatase-1)-mediated dephosphorylation—has been found to regulate the activity of YAP2, very little is known about its acetylation. In our experiments, we observed that the expression of SIRT1 is significantly upregulated in the tumor samples of the hepatocarcinoma patients, and SIRT1 mRNA level positively correlates with connective tissue growth factor (CTGF) mRNA level. We then found that SIRT1 deacetylates YAP2 protein in HCC cells and SIRT1-mediated deacetylation increases the YAP2/TEAD4 association, leading to YAP2/TEAD4 transcriptional activation and upregulated cell growth in HCC cells. Moreover, knockdown of SIRT1 blocks the cisplatin (CDDP)-induced nuclear translocation of YAP2 and enhances the chemosensitivity of HCC cells to CDDP treatment. Together, our findings reveal a new regulatory mechanism of YAP2 by the SIRT1-mediated deacetylation that may be involved in HCC tumorigenesis and drug resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

HCC:

hepatocellular carcinoma

NAD:

nicotinamide adenine dinucleotide

YAP2:

Yes-associated protein 2.

References

  1. Parkin DM, Bray F, Ferlay J, Pisani P . Estimating the world cancer burden: Globocan 2000. Int J Cancer 2001; 94: 153–156.

    Article  CAS  Google Scholar 

  2. Parkin DM, Bray F, Ferlay J, Pisani P . Global cancer statistics, 2002. CA Cancer J Clin 2005; 55: 74–108.

    Article  Google Scholar 

  3. El-Serag HB, Rudolph KL . Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 2007; 132: 2557–2576.

    Article  CAS  Google Scholar 

  4. Huang J, Wu S, Barrera J, Matthews K, Pan D . The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila Homolog of YAP. Cell 2005; 122: 421–434.

    Article  CAS  Google Scholar 

  5. Vassilev A, Kaneko KJ, Shu H, Zhao Y, DePamphilis ML . TEAD/TEF transcription factors utilize the activation domain of YAP65, a Src/Yes-associated protein localized in the cytoplasm. Genes Dev 2001; 15: 1229–1241.

    Article  CAS  Google Scholar 

  6. Chan SW, Lim CJ, Loo LS, Chong YF, Huang C, Hong W . TEADs mediate nuclear retention of TAZ to promote oncogenic transformation. J Biol Chem 2009; 284: 14347–14358.

    Article  CAS  Google Scholar 

  7. Zhang H, Liu CY, Zha ZY, Zhao B, Yao J, Zhao S et al. TEAD transcription factors mediate the function of TAZ in cell growth and epithelial-mesenchymal transition. J Biol Chem 2009; 284: 13355–13362.

    Article  CAS  Google Scholar 

  8. Camargo FD, Gokhale S, Johnnidis JB, Fu D, Bell GW, Jaenisch R et al. YAP1 increases organ size and expands undifferentiated progenitor cells. Curr Biol 2007; 17: 2054–2060.

    Article  CAS  Google Scholar 

  9. Dong J, Feldmann G, Huang J, Wu S, Zhang N, Comerford SA et al. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 2007; 130: 1120–1133.

    Article  CAS  Google Scholar 

  10. Zhou D, Conrad C, Xia F, Park JS, Payer B, Yin Y et al. Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene. Cancer Cell 2009; 16: 425–438.

    Article  CAS  Google Scholar 

  11. Urtasun R, Latasa MU, Demartis MI, Balzani S, Goni S, Garcia-Irigoyen O et al. Connective tissue growth factor autocriny in human hepatocellular carcinoma: oncogenic role and regulation by epidermal growth factor receptor/yes-associated protein-mediated activation. Hepatology 2011; 54: 2149–2158.

    Article  CAS  Google Scholar 

  12. Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA, Pandita TK et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 2001; 107: 149–159.

    Article  CAS  Google Scholar 

  13. Wang C, Chen L, Hou X, Li Z, Kabra N, Ma Y et al. Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage. Nat Cell Biol 2006; 8: 1025–1031.

    Article  CAS  Google Scholar 

  14. Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 2004; 303: 2011–2015.

    Article  CAS  Google Scholar 

  15. Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA et al. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 2004; 23: 2369–2380.

    Article  CAS  Google Scholar 

  16. Mao B, Zhao G, Lv X, Chen HZ, Xue Z, Yang B et al. Sirt1 deacetylates c-Myc and promotes c-Myc/Max association. Int J Biochem Cell Biol 2011; 43: 1573–1581.

    Article  CAS  Google Scholar 

  17. Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev 2007; 21: 2747–2761.

    Article  CAS  Google Scholar 

  18. Lan F, Cacicedo JM, Ruderman N, Ido Y . SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation. J Biol Chem 2008; 283: 27628–27635.

    Article  CAS  Google Scholar 

  19. Cohen HY, Lavu S, Bitterman KJ, Hekking B, Imahiyerobo TA, Miller C et al. Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis. Mol Cell 2004; 13: 627–638.

    Article  CAS  Google Scholar 

  20. Matsuzaki H, Daitoku H, Hatta M, Aoyama H, Yoshimochi K, Fukamizu A . Acetylation of Foxo1 alters its DNA-binding ability and sensitivity to phosphorylation. Proc Natl Acad Sci USA 2005; 102: 11278–11283.

    Article  CAS  Google Scholar 

  21. Du Z, Song J, Wang Y, Zhao Y, Guda K, Yang S et al. DNMT1 stability is regulated by proteins coordinating deubiquitination and acetylation-driven ubiquitination. Sci Signal 2010; 3: ra80.

    Article  Google Scholar 

  22. Hata S, Hirayama J, Kajiho H, Nakagawa K, Hata Y, Katada T et al. A novel acetylation cycle of transcription co-activator Yes-associated protein that is downstream of Hippo pathway is triggered in response to SN2 alkylating agents. J Biol Chem 287: 22089–22098.

    Article  CAS  Google Scholar 

  23. Wang P, Bai Y, Song B, Wang Y, Liu D, Lai Y et al. PP1A-mediated dephosphorylation positively regulates YAP2 activity. PLoS One 2011; 6: e24288.

    Article  CAS  Google Scholar 

  24. Hao Y, Chun A, Cheung K, Rashidi B, Yang X . Tumor suppressor LATS1 is a negative regulator of oncogene YAP. J Biol Chem 2008; 283: 5496–5509.

    Article  CAS  Google Scholar 

  25. Dai JM, Wang ZY, Sun DC, Lin RX, Wang SQ . SIRT1 interacts with p73 and suppresses p73-dependent transcriptional activity. J Cell Physiol 2007; 210: 161–166.

    Article  CAS  Google Scholar 

  26. Costanzo A, Merlo P, Pediconi N, Fulco M, Sartorelli V, Cole PA et al. DNA damage-dependent acetylation of p73 dictates the selective activation of apoptotic target genes. Mol Cell 2002; 9: 175–186.

    Article  CAS  Google Scholar 

  27. Brooks CL, Gu W . The impact of acetylation and deacetylation on the p53 pathway. Protein Cell 2011; 2: 456–462.

    Article  CAS  Google Scholar 

  28. Martinez-Balbas MA, Bauer UM, Nielsen SJ, Brehm A, Kouzarides T . Regulation of E2F1 activity by acetylation. EMBO J 2000; 19: 662–671.

    Article  CAS  Google Scholar 

  29. Molloy D, Mapp KL, Webster R, Gallimore PH, Grand RJ . Acetylation at a lysine residue adjacent to the CtBP binding motif within adenovirus 12 E1A causes structural disruption and limited reduction of CtBP binding. Virology 2006; 355: 115–126.

    Article  CAS  Google Scholar 

  30. Zhao B, Ye X, Yu J, Li L, Li W, Li S et al. TEAD mediates YAP-dependent gene induction and growth control. Genes Dev 2008; 22: 1962–1971.

    Article  CAS  Google Scholar 

  31. Kemper JK, Xiao Z, Ponugoti B, Miao J, Fang S, Kanamaluru D et al. FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated in metabolic disease states. Cell Metab 2009; 10: 392–404.

    Article  CAS  Google Scholar 

  32. Firestein R, Blander G, Michan S, Oberdoerffer P, Ogino S, Campbell J et al. The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth. PLoS One 2008; 3: e2020.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr Depei Liu for the gift of all the SIRT1 plasmids; Dr Lei Zhang for the 3*SD binding site artificial-luciferase reporter plasmid; Dr Zhixiong Xiao for the p73 antibody; Ursula Adams for manuscript editing; and Xudong Zhao and Su Liu of IBP core facility center for technical support. This work was supported by the National Science Foundation of China (81172553, 81201564, 81125010 and 81030025), and the Ministry of Science and Technology of China (973-2009CB918704 and 973-2012CB910701).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z Yuan or W Bi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mao, B., Hu, F., Cheng, J. et al. SIRT1 regulates YAP2-mediated cell proliferation and chemoresistance in hepatocellular carcinoma. Oncogene 33, 1468–1474 (2014). https://doi.org/10.1038/onc.2013.88

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.88

Keywords

This article is cited by

Search

Quick links