Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A phosphatase-independent gain-of-function mutation in PTEN triggers aberrant cell growth in astrocytes through an autocrine IGF-1 loop

Abstract

Loss-of-function mutations in the phosphatase PTEN (phosphatase and tensin homolog deleted on chromosome10) contribute to aberrant cell growth in part through upregulation of the mitogenic IGF-1/PI3K/Akt pathway. In turn, this pathway exerts a homeostatic feedback over PTEN. Using mutagenesis analysis to explore a possible impact of this mutual control on astrocyte growth, we found that truncation of the C-terminal region of PTEN (Δ51) associates with a marked increase in NFκB activity, a transcription factor overactivated in astrocyte tumors. Whereas mutations of PTEN are considered to lead to a loss-of-function, PTENΔ51, a truncation that comprises a region frequently mutated in human gliomas, displayed a neomorphic (gain-of-function) activity that was independent of its phosphatase activity. This gain-of-function of PTENΔ51 includes stimulation of IGF-1 synthesis through protein kinase A activation of the IGF-1 promoter. Increased IGF-1 originates an autocrine loop that activates Akt and NFκB. Constitutive activation of NFκB in PTENΔ51-expressing astrocytes leads to aberrant cell growth; astrocytes expressing this mutant PTEN generate colonies in vitro and tumors in vivo. Mutations converting a tumor suppressor such as PTEN into a tumor promoter through a gain-of-function involving IGF-1 production may further our understanding of the role played by this growth factor in glioma growth and help us define druggable targets for personalized therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P et al. An integrated genomic analysis of human glioblastoma multiforme. Science 2008; 321: 1807–1812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 2007; 114: 97–109.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Carnero A, Blanco-Aparicio C, Renner O, Link W, Leal JF . The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications. Curr Cancer Drug Targets 2008; 8: 187–198.

    Article  CAS  PubMed  Google Scholar 

  4. Werner H, Bruchim I . The insulin-like growth factor-I receptor as an oncogene. Arch Physiol Biochem 2009; 115: 58–71.

    Article  CAS  PubMed  Google Scholar 

  5. Antoniades HN, Galanopoulos T, Neville-Golden J, Maxwell M . Expression of insulin-like growth factors I and II and their receptor mRNAs in primary human astrocytomas and meningiomas; in vivo studies using in situ hybridization and immunocytochemistry. Int J Cancer 1992; 50: 215–222.

    Article  CAS  PubMed  Google Scholar 

  6. Sandberg AC, Engberg C, Lake M, von HH, Sara VR . The expression of insulin-like growth factor I and insulin-like growth factor II genes in the human fetal and adult brain and in glioma. Neurosci Lett 1988; 93: 114–119.

    Article  CAS  PubMed  Google Scholar 

  7. Pons S, Torres-Aleman I . Insulin-like growth factor-i stimulates dephosphorylation of ikappa b through the serine phosphatase calcineurin (Protein Phosphatase 2B). J Biol Chem 2000; 275: 38620–38625.

    Article  CAS  PubMed  Google Scholar 

  8. Fernandez S, Garcia-Garcia M, Torres-Aleman I . Modulation by insulin-like growth factor I of the phosphatase PTEN in astrocytes. Biochim Biophys Acta 2008; 1783: 803–812.

    Article  CAS  PubMed  Google Scholar 

  9. Feinman R, Koury J, Thames M, Barlogie B, Epstein J, Siegel DS . Role of NF-kappaB in the rescue of multiple myeloma cells from glucocorticoid-induced apoptosis by bcl-2. Blood 1999; 93: 3044–3052.

    CAS  PubMed  Google Scholar 

  10. Chen J, McKay RR, Parada L . Malignant Glioma: Lessons from Genomics, Mouse Models, and Stem Cells. Cell 2012; 149: 36–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Karin M . Nuclear factor-[kappa]B in cancer development and progression. Nature 2006; 441: 431–436.

    Article  CAS  PubMed  Google Scholar 

  12. Perkins ND . Integrating cell-signalling pathways with NF-[kappa]B and IKK function. Nat Rev Mol Cell Biol 2007; 8: 49–62.

    Article  CAS  PubMed  Google Scholar 

  13. Bredel M, Scholtens DM, Yadav AK, Alvarez AA, Renfrow JJ, Chandler JP et al. NFKBIA deletion in glioblastomas. N Engl J Med 2011; 364: 627–637.

    Article  CAS  PubMed  Google Scholar 

  14. Gustin JA, Maehama T, Dixon JE, Donner DB . The PTEN tumor suppressor protein inhibits tumor necrosis factor-induced nuclear factor kappa B activity. J Biol Chem 2001; 276: 27740–27744.

    Article  CAS  PubMed  Google Scholar 

  15. Vasudevan KM, Gurumurthy S, Rangnekar VM . Suppression of PTEN expression by NF-kappa B prevents apoptosis. Mol Cell Biol 2004; 24: 1007–1021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shono T, Tofilon PJ, Bruner JM, Owolabi O, Lang FF . Cyclooxygenase-2 expression in human gliomas: prognostic significance and molecular correlations. Cancer Res 2001; 61: 4375–4381.

    CAS  PubMed  Google Scholar 

  17. Engelman JA, Luo J, Cantley LC . The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 2006; 7: 606–619.

    Article  CAS  PubMed  Google Scholar 

  18. Shen WH, Balajee AS, Wang J, Wu H, Eng C, Pandolfi PP et al. Essential role for nuclear PTEN in maintaining chromosomal integrity. Cell 2007; 128: 157–170.

    Article  CAS  PubMed  Google Scholar 

  19. Forbes SA, Bhamra G, Bamford S, Dawson E, Kok C, Clements J et al. The catalogue of somatic mutations in cancer (COSMIC). Curr Protoc Hum Genet 2008; 39: D945–D950.

    Google Scholar 

  20. Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, Beare D et al. COSMIC: mining complete cancer genomes in the catalogue of somatic mutations in cancer. Nucleic Acids Res 2011; 39: D945–D950.

    Article  CAS  PubMed  Google Scholar 

  21. Rahdar M, Inoue T, Meyer T, Zhang J, Vazquez F, Devreotes PN . A phosphorylation-dependent intramolecular interaction regulates the membrane association and activity of the tumor suppressor PTEN. Proc Natl Acad Sci USA 2009; 106: 480–485.

    Article  CAS  PubMed  Google Scholar 

  22. Taniguchi CM, Tran TT, Kondo T, Luo J, Ueki K, Cantley LC et al. Phosphoinositide 3-kinase regulatory subunit p85alpha suppresses insulin action via positive regulation of PTEN. Proc Natl Acad Sci USA 2006; 103: 12093–12097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kachra Z, Yang CR, Murphy LJ, Posner BI . The regulation of insulin-like growth factor-binding protein 1 messenger ribonucleic acid in cultured rat hepatocytes: the roles of glucagon and growth hormone. Endocrinology 1994; 135: 1722–1728.

    Article  CAS  PubMed  Google Scholar 

  24. McCarthy TL, Thomas MJ, Centrella M, Rotwein P . Regulation of insulin-like growth factor I transcription by cyclic adenosine 3',5'-monophosphate (cAMP) in fetal rat bone cells through an element within exon 1: protein kinase A-dependent control without a consensus AMP response element. Endocrinology 1995; 136: 3901–3908.

    Article  CAS  PubMed  Google Scholar 

  25. Thomas MJ, Umayahara Y, Shu H, Centrella M, Rotwein P, McCarthy TL . Identification of the cAMP response element that controls transcriptional activation of the insulin-like growth factor-I gene by prostaglandin E2 in osteoblasts. J Biol Chem 1996; 271: 21835–21841.

    Article  CAS  PubMed  Google Scholar 

  26. Vousden KH, Lane DP . p53 in health and disease. Nat Rev Mol Cell Biol 2007; 8: 275–283.

    Article  CAS  PubMed  Google Scholar 

  27. Bartkova J, Hamerlik P, Stockhausen MT, Ehrmann J, Hlobilkova A, Laursen H et al. Replication stress and oxidative damage contribute to aberrant constitutive activation of DNA damage signalling in human gliomas. Oncogene 2010; 29: 5095–5102.

    Article  CAS  PubMed  Google Scholar 

  28. Takahashi K, Suzuki K . Association of insulin-like growth-factor-I-induced DNA synthesis with phosphorylation and nuclear exclusion of p53 in human breast cancer MCF-7 cells. Int J Cancer 1993; 55: 453–458.

    Article  CAS  PubMed  Google Scholar 

  29. Johnson ReF Perkins ND . Nuclear factor-+¦B, p53, and mitochondria: regulation of cellular metabolism and the Warburg effect. Trends Biochem Sci 2012; 37: 317–324.

    Article  Google Scholar 

  30. Nowsheen S, Wukovich RL, Aziz K, Kalogerinis PT, Richardson CC, Panayiotidis MI et al. Accumulation of oxidatively induced clustered DNA lesions in human tumor tissues. Mutat Res 2009; 674: 131–136.

    Article  CAS  PubMed  Google Scholar 

  31. Maillet A, Pervaiz S . Redox regulation of p53, redox effectors regulated by p53: a subtle balance. Antioxid Redox Signal 2012; 16: 1285–1294.

    Article  CAS  PubMed  Google Scholar 

  32. Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 2005; 434: 864–870.

    Article  CAS  PubMed  Google Scholar 

  33. Jenkins LM, Durell SR, Mazur SJ, Appella E . p53 N-terminal phosphorylation: a defining layer of complex regulation. Carcinogenesis 2012; 33: 1441–1449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jacques TS, Swales A, Brzozowski MJ, Henriquez NV, Linehan JM, Mirzadeh Z et al. Combinations of genetic mutations in the adult neural stem cell compartment determine brain tumour phenotypes. EMBO J 2010; 29: 222–235.

    Article  CAS  PubMed  Google Scholar 

  35. Green A, Beer P . Somatic mutations of IDH1 and IDH2 in the leukemic transformation of myeloproliferative neoplasms. N Engl J Med 2010; 362: 369–370.

    Article  CAS  PubMed  Google Scholar 

  36. Chalhoub N, Baker SJ . PTEN and the PI3-kinase pathway in cancer. Annu Rev Pathol 2009; 4: 127–150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Maier D, Jones G, Li X, Schonthal AH, Gratzl O, Van Meir EG et al. The PTEN lipid phosphatase domain is not required to inhibit invasion of glioma cells. Cancer Res 1999; 59: 5479–5482.

    CAS  PubMed  Google Scholar 

  38. Tang Y, Eng C . PTEN autoregulates its expression by stabilization of p53 in a phosphatase-independent manner. Cancer Res 2006; 66: 736–742.

    Article  CAS  PubMed  Google Scholar 

  39. Li Z, Dong X, Wang Z, Liu W, Deng N, Ding Y et al. Regulation of PTEN by Rho small GTPases. Nat Cell Biol 2005; 7: 399–404.

    Article  CAS  PubMed  Google Scholar 

  40. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 1997; 275: 1943–1947.

    Article  CAS  PubMed  Google Scholar 

  41. Rasheed BK, Stenzel TT, McLendon RE, Parsons R, Friedman AH, Friedman HS et al. PTEN gene mutations are seen in high-grade but not in low-grade gliomas. Cancer Res 1997; 57: 4187–4190.

    CAS  PubMed  Google Scholar 

  42. Duerr EM, Rollbrocker B, Hayashi Y, Peters N, Meyer-Puttlitz B, Louis DN et al. PTEN mutations in gliomas and glioneuronal tumors. Oncogene 1998; 16: 2259–2264.

    Article  CAS  PubMed  Google Scholar 

  43. Vazquez F, Ramaswamy S, Nakamura N, Sellers WR . Phosphorylation of the PTEN tail regulates protein stability and function. Mol Cell Biol 2000; 20: 5010–5018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vazquez F, Grossman SR, Takahashi Y, Rokas MV, Nakamura N, Sellers WR . Phosphorylation of the PTEN tail acts as an inhibitory switch by preventing its recruitment into a protein complex. J Biol Chem 2001; 276: 48627–48630.

    Article  CAS  PubMed  Google Scholar 

  45. Chen TC, Hinton DR, Zidovetzki R, Hofman FM . Up-regulation of the cAMP/PKA pathway inhibits proliferation, induces differentiation, and leads to apoptosis in malignant gliomas. Lab Invest 1998; 78: 165–174.

    CAS  PubMed  Google Scholar 

  46. Wang Y, Ande SR, Mishra S . Phosphorylation of transglutaminase 2 (TG2) at serine-216 has a role in TG2 mediated activation of nuclear factor-kappa B and in the downregulation of PTEN. BMC Cancer 2012; 12: 277.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Glick RP, Lichtor T, Unterman TG . Insulin-like growth factors in central nervous system tumors. J Neurooncol 1997; 35: 315–325.

    Article  CAS  PubMed  Google Scholar 

  48. Zumkeller W, Westphal M . The IGF/IGFBP system in CNS malignancy. Mol Pathol 2001; 54: 227–229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Baserga R . The insulin-like growth factor I receptor: a key to tumor growth? Cancer Res 1995; 55: 249–252.

    CAS  PubMed  Google Scholar 

  50. Romashkova JA, Makarov SS . NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling. Nature 1999; 401: 86–90.

    Article  CAS  PubMed  Google Scholar 

  51. Franco C, Fernandez S, Torres A . I. Frataxin deficiency unveils cell-context dependent actions of insulin-like growth factor I on neurons. Mol Neurodegener 2012; 7: 51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fernandez AM, Fernandez S, Carrero P, Garcia-Garcia M, Torres-Aleman I . Calcineurin in reactive astrocytes plays a key role in the interplay between proinflammatory and anti-inflammatory signals. J Neurosci 2007; 27: 8745–8756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are thankful to L. Guinea and M. Garcia for excellent technical support. This work was funded by Spanish Ministry of Science (SAF2007–60051 andSAF2010–17036) and by CIBERNED.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I Torres-Alemán.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández, S., Genis, L. & Torres-Alemán, I. A phosphatase-independent gain-of-function mutation in PTEN triggers aberrant cell growth in astrocytes through an autocrine IGF-1 loop. Oncogene 33, 4114–4122 (2014). https://doi.org/10.1038/onc.2013.376

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.376

Keywords

This article is cited by

Search

Quick links