Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

PTEN ablation in RasHa/Fos skin carcinogenesis invokes p53-dependent p21 to delay conversion while p53-independent p21 limits progression via cyclin D1/E2 inhibition

Abstract

To investigate tumour progression mechanism in transgenic mouse skin carcinogenesis, inducible PTEN ablation (Δ5PTENflx) was targeted to the epidermis of mice expressing activated rasHa/fos oncogenes (HK1.ras and HK1.fos). RU486-treated HK1.ras/fos-Δ5PTENflx epidermis exhibited significant keratinocyte proliferation resulting in hyperplasia and proliferating cysts. While HK1.ras/fos-Δ5PTENflx papillomatogenesis was accelerated, malignant conversion was delayed and tumours exhibited well-differentiated squamous cell carcinoma (wdSCC) histotypes, suggesting inhibition of early-stage malignant progression. Immediate elevated p53/p21 expression was observed in HK1.ras/fos-Δ5PTENflx hyperplasia, cysts and papillomas, and while malignant conversion required p53 loss, elevated p21 expression persisted in most wdSCCs to limit further progression, unless p21 was also lost and wdSCC progressed to more aggressive carcinomas. In contrast, TPA-promoted (that is, c-fos-activated) bi-genic HK1.ras-Δ5PTENflx cohorts lost p53/p21 expression during early papillomatogenesis and rapidly produced poorly differentiated carcinomas (pdSCCs) with high BrdU-labelling and elevated cyclin D1/E2 expression levels, indicative of a progression mechanism driven by failures in cell-cycle control. Intriguingly, HK1.ras/fos-Δ5PTENflx wdSCCs did not exhibit similar failures, as western and immunofluorescence analysis found downregulated cyclin E2 whenever p21 persisted; further, while westerns detected elevated cyclin D1, immunofluorescence identified reduced expression in proliferative basal layer nuclei and a redistributed expression profile throughout p21-positive wdSCC keratinocytes. These data demonstrate that rapid early epidermal responses to rasHa/fos/ΔPTEN co-operation involve induction of p53/p21 to alter differentiation and divert excessive proliferation into cyst formation. Further, despite three potent oncogenic insults p53 loss was required for malignant conversion, and following p53 loss persistent, p53-independent p21 expression possessed the potency to limit early-stage malignant progression via cyclin D1/E2 inhibition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    Article  CAS  PubMed  Google Scholar 

  2. Floor SL, Dumont JE, Maenhaut C, Raspe E . Hallmarks of cancer: of all cancer cells, all the time? Trends Mol Med 2012; 18: 509–515.

    Article  CAS  PubMed  Google Scholar 

  3. Sprouffske K, Pepper JW, Maley CC . Accurate reconstruction of the temporal order of mutations in neoplastic progression. Cancer Prev Res 2011; 4: 1135–1144.

    Article  Google Scholar 

  4. Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumourigenesis. Nature 2005; 436: 725–730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Leong W, Chau JF, Li B . p53 deficiency leads to compensatory up-regulation of p16INK4a. Mol Cancer Res 2009; 7: 354–360.

    Article  CAS  PubMed  Google Scholar 

  6. Vasudevan KM, Burikhanov R, Goswami A, Rangnekar VM . Suppression of PTEN expression is essential for anti-apoptosis and cellular transformation by oncogenic Ras. Cancer Res 2007; 67: 10343–10350.

    Article  CAS  PubMed  Google Scholar 

  7. Swanton C . Intratumour heterogeneity: evolution through space and time. Cancer Res 2012; 72: 4875–4882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Karnoub AE, Weinberg RA . Ras oncogenes: split personalities. Nat Rev Mol Cell Biol 2008; 9: 517–531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Milde-Langosch K . The Fos family of transcription factors and their role in tumourigenesis. Eur J Cancer 2005; 41: 2449–2456.

    Article  CAS  PubMed  Google Scholar 

  10. Hollander MC, Blumenthal GM, Dennis PA . PTEN loss in the continuum of common cancers, rare syndromes and mouse models. Nat Rev Cancer 2011; 11: 289–01.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Warfel NA, El-Deiry WS . p21WAF1 and tumourigenesis: 20 years after. Curr Opin Oncol 2013; 25: 52–58.

    Article  CAS  PubMed  Google Scholar 

  12. Meek DW . Tumour suppression by p53: a role for the DNA damage response? Nat Rev Cancer 2009; 9: 714–723.

    Article  CAS  PubMed  Google Scholar 

  13. Brown K, Strathdee D, Bryson S, Lambie W, Balmain A . The malignant capacity of skin tumours induced by expression of a mutant H-ras transgene depends on the cell type targeted. Curr Biol 1998; 8: 516–524.

    Article  CAS  PubMed  Google Scholar 

  14. Greenhalgh DA, Quintanilla MI, Orengo CC, Barber JL, Eckhardt JN, Rothnagel JA et al. Cooperation between v-fos and v-rasHa induces autonomous papillomas in transgenic epidermis but not malignant conversion. Cancer Res 1993; 53: 5071–5075.

    CAS  PubMed  Google Scholar 

  15. Schlingemann J, Hess J, Wrobel G, Breitenbach U, Gebhardt C, Steinlein P et al. Profile of gene expression induced by the tumour promotor TPA in murine epithelial cells. Int J Cancer 2003; 104: 699–708.

    Article  CAS  PubMed  Google Scholar 

  16. Kemp CJ, Donehower LA, Bradley A, Balmain A . Reduction of p53 gene dosage does not increase initiation or promotion but enhances malignant progression of chemically induced skin tumours. Cell 1993; 74: 813–822.

    Article  CAS  PubMed  Google Scholar 

  17. Topley GI, Okuyama R, Gonzales JG, Conti C, Dotto GP . p21(WAF1/Cip1) functions as a suppressor of malignant skin tumour formation and a determinant of keratinocyte stem-cell potential. Proc Natl Acad Sci USA 1999; 96: 9089–9094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Weinberg WC, Fernandez-Salas E, Morgan DL, Shalizi A, Mirosh E, Stanulis E . Genetic deletion of p21WAF1 enhances papilloma formation but not malignant conversion in experimental mouse skin carcinogenesis. Cancer Res 1999; 59: 2050–2054.

    CAS  PubMed  Google Scholar 

  19. Ohtani N, Imamura Y, Yamakoshi K, Hirota F, Nakayama R, Kubo Y et al. Visualizing the dynamics of p21(Waf1/Cip1) cyclin-dependent kinase inhibitor expression in living animals. Proc Natl Acad Sci USA. 2007; 104: 15034–15039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Devgan V, Nguyen BC, Oh H, Dotto GP . p21WAF1/Cip1 suppresses keratinocyte differentiation independently of the cell cycle through transcriptional up-regulation of the IGF-I gene. J Biol Chem 2006; 281: 30463–30470.

    Article  CAS  PubMed  Google Scholar 

  21. Yoo LI, Liu DW, Le Vu S, Bronson RT, Wu H, Yuan J . Pten deficiency activates distinct downstream signalling pathways in a tissue-specific manner. Cancer Res 2006; 66: 1929–1939.

    Article  CAS  PubMed  Google Scholar 

  22. Barboza JA, Liu G, Ju Z, El-Naggar AK, Lozano G . p21 delays tumour onset by preservation of chromosomal stability. Proc Natl Acad Sci USA. 2006; 103: 19842–19847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fistarol SK, Anliker MD, Itin P . Cowden disease or multiple hamartoma syndrome: cutaneous clue to internal malignancy. Eur J Dermatol 2002; 1: 411–421.

    Google Scholar 

  24. Suzuki A, Itami S, Ohishi M, Hamada K, Inoue T, Komazawa N et al. Keratinocyte-specific PTEN deficiency results in epidermal hyperplasia, accelerated hair follicle morphogenesis and tumour formation. Cancer Res 2003; 63: 674–681.

    CAS  PubMed  Google Scholar 

  25. Mao JH, To MD, Perez-Losada J, Wu D, Del Rosario R, Balmain A . Mutually exclusive mutations of the Pten and ras pathways in skin tumour progression. Genes Dev 2004; 18: 1800–1805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yao D, Alexander CL, Quinn JA, Porter MJ, Wu H, Greenhalgh DA . PTEN loss promotes rasHa-mediated papillomatogenesis via dual up-regulation of AKT activity and cell cycle deregulation but malignant conversion proceeds via PTEN-dependent pathways. Cancer Res 2006; 66: 1302–1312.

    Article  CAS  PubMed  Google Scholar 

  27. Yao D, Alexander CL, Quinn JA, Chan W-C, Wu H, Greenhalgh DA . Fos co-operation with PTEN loss elicits keratoacanthoma not carcinoma due to p53/p21WAF-induced differentiation triggered by GSK3β inactivation and reduced AKT activity. J Cell Sci 2008; 121: 1758–1769.

    Article  CAS  PubMed  Google Scholar 

  28. Koul D, Shen R, Shishodia S, Takada Y, Bhat KP, Reddy SA et al. PTEN down regulates AP-1 and targets c-fos in human glioma cells via PI3-kinase/Akt pathway. Mol Cell Biochem 2007; 300: 77–87.

    Article  CAS  PubMed  Google Scholar 

  29. Berton TR, Wang X-J, Zhou Z, Kellendonk C, Schütz G, Tsai S et al. Characterization of an inducible, epidermal-specific knockout system: differential expression of lacZ in different Cre reporter mouse strains. Genesis 2000; 2: 160–161.

    Article  Google Scholar 

  30. Freeman DJ, Li AG, Wei G, Li HH, Kertesz N, Lesche R et al. PTEN tumour suppressor regulates p53 protein levels and activity through phosphatase-dependent and -independent mechanisms. Cancer Cell 2003; 3: 117–130.

    Article  CAS  PubMed  Google Scholar 

  31. Birkbak NJ, Eklund AC, Li Q, McClelland SE, Endesfelder D, Tan P et al. Paradoxical relationship between chromosomal instability and survival outcome in cancer. Cancer Res 2011; 71: 3447–3452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tibarewal P, Zilidis G, Spinelli L, Schurch N, Maccario H, Gray A et al. PTEN protein phosphatase activity correlates with control of gene expression and invasion, a tumour-suppressing phenotype, but not with AKT activity. Sci Signal 2012; 5: ra18.

    Article  PubMed  Google Scholar 

  33. Takeuchi S, Takahashi A, Motoi N, Yoshimoto S, Tajima T, Yamakoshi K et al. Intrinsic cooperation between p16INK4a and p21Waf1/Cip1 in the onset of cellular senescence and tumour suppression in vivo. Cancer Res 2010; 70: 9381–9390.

    Article  CAS  PubMed  Google Scholar 

  34. Junttila MR, Karnezis AN, Garcia D, Madriles F, Kortlever RM, Rostker F et al. Selective activation of p53-mediated tumour suppression in high-grade tumours. Nature 2010; 468: 567–571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mulholland DJ, Dedhar S, Wu H, Nelson CC . PTEN and GSK3beta: key regulators of progression to androgen-independent prostate cancer. Oncogene 2006; 25: 329–337.

    Article  CAS  PubMed  Google Scholar 

  36. Ghosh JC, Altieri DC . Activation of p53-dependent apoptosis by acute ablation of glycogen synthase kinase-3beta in colorectal cancer cells. Clin Cancer Res 2005; 11: 4580–4588.

    Article  CAS  PubMed  Google Scholar 

  37. Mehic D, Bakiri L, Ghannadan M, Wagner EF, Tschachler E . Fos and jun proteins are specifically expressed during differentiation of human keratinocytes. J Invest Dermatol 2005; 124: 212–220.

    Article  CAS  PubMed  Google Scholar 

  38. Niemann C, Owens DM, Hulsken J, Birchmeier W, Watt FM . Expression of DeltaNLef1 in mouse epidermis results in differentiation of hair follicles into squamous epidermal cysts and formation of skin tumours. Development 2002; 129: 95–109.

    CAS  PubMed  Google Scholar 

  39. Ghaffar SA, Clements SE, Lear JT . Epidermoid cysts mimicking recurrence of superficial basal cell carcinoma following photodynamic therapy. Clin Exp Dermatol 2007; 32: 223–224.

    Article  CAS  PubMed  Google Scholar 

  40. Subauste MC, Nalbant P, Adamson ED, Hahn KM . Vinculin controls PTEN protein level by maintaining the interaction of the adherens junction protein beta-catenin with the scaffolding protein MAGI-2. J Biol Chem 2005; 280: 5676–5681.

    Article  CAS  PubMed  Google Scholar 

  41. Minella AC, Swanger J, Bryant E, Welcker M, Hwang H, Clurman BE . p53 and p21 form an inducible barrier that protects cells against cyclin E-cdk2 deregulation. Curr Biol 2002; 12: 1817–1827.

    Article  CAS  PubMed  Google Scholar 

  42. Milde-Langosch K, Bamberger AM, Methner C, Rieck G, Löning T . Expression of cell cycle-regulatory proteins rb, p16/MTS1, p27/KIP1, p21/WAF1, cyclin D1 and cyclin E in breast cancer: correlations with expression of activating protein-1 family members. Int J Cancer 2000; 87: 468–472.

    Article  CAS  PubMed  Google Scholar 

  43. Driessens G, Beck B, Caauwe A, Simons BD, Blanpain C . Defining the mode of tumour growth by clonal analysis. Nature 2012; 488: 527–530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Macias E, Miliani de Marval PL, De Siervi A, Conti CJ, Senderowicz AM, Rodriguez-Puebla ML . CDK2 activation in mouse epidermis induces keratinocyte proliferation but does not affect skin tumour development. Am J Pathol 2008; 173: 526–535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang X-J, Greenhalgh DA, Jaing A, He D, Zhong L, Medina D. et al. Characterisation of centrosome abnormality and angiogenesis in epidermal targeted p53(175) mutant or p53 knockout transgenic mice following chemical carcinogenesis: evidence for gain-of -function. Mol Carcinog 1998; 23: 185–192.

    Article  CAS  PubMed  Google Scholar 

  46. Torchia EC, Caulin C, Acin S, Terzian T, Kubick BJ, Box NF et al. Myc, Aurora Kinase A, and mutant p53(R172H) co-operate in a mouse model of metastatic skin carcinoma. Oncogene 2012; 31: 2680–2690.

    Article  CAS  PubMed  Google Scholar 

  47. Jirawatnotai S, Hu Y, Livingston DM, Sicinski P . Proteomic identification of a direct role for cyclin D1 in DNA damage repair. Cancer Res 2012; 72: 4289–4293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ming M, Feng L, Shea C, Soltani K, Zhao B, Han W et al. PTEN positively regulates UVB-induced DNA damage repair. Cancer Res 2011; 71: 5287–5295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hinds PW . A confederacy of kinases: Cdk2 and Cdk4 conspire to control embryonic cell proliferation. Mol Cell 2006; 22: 432–433.

    Article  CAS  PubMed  Google Scholar 

  50. Akli S, Zheng PJ, Multani AS, Wingate HF, Pathak S, Zhang N et al. Tumour-specific low molecular weight forms of cyclin E induce genomic instability and resistance to p21, p27, and antiestrogens in breast cancer. Cancer Res 2004; 64: 3198–3108.

    Article  CAS  PubMed  Google Scholar 

  51. He G, Kuang J, Huang Z, Koomen J, Kobayashi R, Khokhar AR et al. Upregulation of p27 and its inhibition of CDK2/cyclin E activity following DNA damage by a novel platinum agent are dependent on the expression of p21. Br J Cancer 2006; 95: 1514–1524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mulholland DJ, Kobayashi N, Ruscetti M, Zhi A, Tran LM, Huang J et al. Pten loss and RAS/MAPK activation cooperate to promote EMT and metastasis initiated from prostate cancer stem/progenitor cells. Cancer Res 2012; 72: 1878–1889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Professor Hong Wu, Department of Molecular and Medical Pharmacology, UCLA, for the original gift of PTEN mice. Professor Dennis Roop, Center for Regenerative Medicine and Stem Cell Biology, Uiversity of Colorado, for the gift of K14.creP mice. Graham Chadwick for assistance with figure preparation; Dennis Duggan for assistance with animal husbandry and Ms Claire Gilbert for assistance with cyclin immunefluorescence analysis. This work was supported by: British Skin Foundation (Grants 610 & 3013), based on initial funding from Cancer Research UK (grant C1361/A2395) and the Scott Endowment to GU Dermatology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D A Greenhalgh.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macdonald, F., Yao, D., Quinn, J. et al. PTEN ablation in RasHa/Fos skin carcinogenesis invokes p53-dependent p21 to delay conversion while p53-independent p21 limits progression via cyclin D1/E2 inhibition. Oncogene 33, 4132–4143 (2014). https://doi.org/10.1038/onc.2013.372

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.372

Keywords

This article is cited by

Search

Quick links