Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

NF-κB-mediated transcriptional upregulation of TNFAIP2 by the Epstein–Barr virus oncoprotein, LMP1, promotes cell motility in nasopharyngeal carcinoma

Abstract

Nasopharyngeal carcinoma (NPC), which is closely associated with Epstein–Barr virus (EBV), is a metastasis-prone epithelial cancer. We previously showed that tumor necrosis factor α-induced protein 2 (TNFAIP2) is highly expressed in NPC tumor tissues and is correlated with metastasis and poor survival in NPC patients. However, the underlying mechanism remains unclear. In this study, we demonstrate that the EBV oncoprotein, latent membrane protein 1 (LMP1), can transcriptionally induce TNFAIP2 expression via NF-κB. Quantitative RT–PCR and western blotting revealed that LMP1 induces TNFAIP2 expression through its C-terminal-activating region (CTAR2) domain, which is required for transduction of NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) signaling. Inhibition of NF-κB activation or depletion of p65 (a component of NF-κB) by RNA interference abolished the LMP1-induced expression of TNFAIP2, whereas ectopic expression of p65 was sufficient to induce TNFAIP2 expression. Luciferase reporter assays showed that LMP1 transcriptionally induces TNFAIP2 expression through a newly identified NF-κB-binding site within the TNFAIP2 promoter (−3 869 to −3 860 bp). Immunohistochemical analysis of NPC biopsy specimens further revealed a significant correlation between the protein levels of TNFAIP2 and activated p65 (R=0.689, P<0.001), indicating that our findings are clinically relevant. Immunofluorescence microscopy and co-immunoprecipitation assays showed that TNFAIP2 associates with actin and is involved in the formation of actin-based membrane protrusions. Furthermore, transwell migration assays demonstrated that TNFAIP2 contributes to LMP1-induced cell motility. Collectively, these findings provide novel insights into the regulation of TNFAIP2 and its role in promoting NPC tumor progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Chen MC, Feng IJ, Lu CH, Chen CC, Lin JT, Huang SH et al. The incidence and risk of second primary cancers in patients with nasopharyngeal carcinoma: a population-based study in Taiwan over a 25-year period (1979-2003). Ann Oncol 2008; 19: 1180–1186.

    Article  Google Scholar 

  2. Jia WH, Huang QH, Liao J, Ye W, Shugart YY, Liu Q et al. Trends in incidence and mortality of nasopharyngeal carcinoma over a 20-25 year period (1978/1983-2002) in Sihui and Cangwu counties in southern China. BMC Cancer 2006; 6: 178.

    Article  Google Scholar 

  3. Ho FC, Tham IW, Earnest A, Lee KM, Lu JJ . Patterns of regional lymph node metastasis of nasopharyngeal carcinoma: a meta-analysis of clinical evidence. BMC Cancer 2012; 12: 98.

    Article  Google Scholar 

  4. Spano JP, Busson P, Atlan D, Bourhis J, Pignon JP, Esteban C et al. Nasopharyngeal carcinomas: an update. Eur J Cancer 2003; 39: 2121–2135.

    Article  Google Scholar 

  5. Lee AW, Poon YF, Foo W, Law SC, Cheung FK, Chan DK et al. Retrospective analysis of 5037 patients with nasopharyngeal carcinoma treated during 1976-1985: overall survival and patterns of failure. Int J Radiat Oncol Biol Phys 1992; 23: 261–270.

    Article  CAS  Google Scholar 

  6. Young LS, Rickinson AB . Epstein-Barr virus: 40 years on. Nat Rev Cancer 2004; 4: 757–768.

    Article  CAS  Google Scholar 

  7. Chen HL, Peng J, Zhu XB, Gao J, Xue JL, Wang MW et al. Detection of EBV in nasopharyngeal carcinoma by quantum dot fluorescent in situ hybridization. Exp Mol Pathol 2010; 89: 367–371.

    Article  CAS  Google Scholar 

  8. Parkin DM . The global health burden of infection-associated cancers in the year 2002. Int J Cancer 2006; 118: 3030–3044.

    Article  CAS  Google Scholar 

  9. Lin SY, Tsang NM, Kao SC, Hsieh YL, Chen YP, Tsai CS et al. Presence of Epstein-Barr virus latent membrane protein 1 gene in the nasopharyngeal swabs from patients with nasopharyngeal carcinoma. Head Neck 2001; 23: 194–200.

    Article  CAS  Google Scholar 

  10. Tsai CL, Li HP, Lu YJ, Hsueh C, Liang Y, Chen CL et al. Activation of DNA methyltransferase 1 by EBV LMP1 Involves c-Jun NH(2)-terminal kinase signaling. Cancer Res 2006; 66: 11668–11676.

    Article  CAS  Google Scholar 

  11. Li HP, Chang YS . Epstein-Barr virus latent membrane protein 1: structure and functions. J Biomed Sci 2003; 10: 490–504.

    Article  CAS  Google Scholar 

  12. Zheng H, Li LL, Hu DS, Deng XY, Cao Y . Role of Epstein-Barr virus encoded latent membrane protein 1 in the carcinogenesis of nasopharyngeal carcinoma. Cell Mol Immunol 2007; 4: 185–196.

    CAS  Google Scholar 

  13. Kaye KM, Izumi KM, Kieff E . Epstein-Barr virus latent membrane protein 1 is essential for B-lymphocyte growth transformation. Proc Natl Acad Sci USA 1993; 90: 9150–9154.

    Article  CAS  Google Scholar 

  14. Wang D, Liebowitz D, Kieff E . An EBV membrane protein expressed in immortalized lymphocytes transforms established rodent cells. Cell 1985; 43: 831–840.

    Article  CAS  Google Scholar 

  15. Chen P, Guo X, Zhou H, Zhang W, Zeng Z, Liao Q et al. SPLUNC1 regulates cell progression and apoptosis through the miR-141-PTEN/p27 pathway, but is hindered by LMP1. PLoS One 2013; 8: e56929.

    Article  CAS  Google Scholar 

  16. Liu HP, Chen CC, Wu CC, Huang YC, Liu SC, Liang Y et al. Epstein-Barr virus-encoded LMP1 interacts with FGD4 to activate Cdc42 and thereby promote migration of nasopharyngeal carcinoma cells. PLoS Pathog 2012; 8: e1002690.

    Article  CAS  Google Scholar 

  17. Lui VW, Yau DM, Cheung CS, Wong SC, Chan AK, Zhou Q et al. FGF8b oncogene mediates proliferation and invasion of Epstein-Barr virus-associated nasopharyngeal carcinoma cells: implication for viral-mediated FGF8b upregulation. Oncogene 2011; 30: 1518–1530.

    Article  CAS  Google Scholar 

  18. Tsuji A, Wakisaka N, Kondo S, Murono S, Furukawa M, Yoshizaki T . Induction of receptor for advanced glycation end products by EBV latent membrane protein 1 and its correlation with angiogenesis and cervical lymph node metastasis in nasopharyngeal carcinoma. Clin Cancer Res 2008; 14: 5368–5375.

    Article  CAS  Google Scholar 

  19. Sarma V, Wolf FW, Marks RM, Shows TB, Dixit VM . Cloning of a novel tumor necrosis factor-alpha-inducible primary response gene that is differentially expressed in development and capillary tube-like formation in vitro. J Immunol 1992; 148: 3302–3312.

    CAS  Google Scholar 

  20. Chevrier N, Mertins P, Artyomov MN, Shalek AK, Iannacone M, Ciaccio MF et al. Systematic discovery of TLR signaling components delineates viral-sensing circuits. Cell 2011; 147: 853–867.

    Article  CAS  Google Scholar 

  21. Ma Y, Koza-Taylor PH, DiMattia DA, Hames L, Fu H, Dragnev KH et al. Microarray analysis uncovers retinoid targets in human bronchial epithelial cells. Oncogene 2003; 22: 4924–4932.

    Article  CAS  Google Scholar 

  22. Hase K, Kimura S, Takatsu H, Ohmae M, Kawano S, Kitamura H et al. M-Sec promotes membrane nanotube formation by interacting with Ral and the exocyst complex. Nat Cell Biol 2009; 11: 1427–1432.

    Article  CAS  Google Scholar 

  23. Chen LC, Chen CC, Liang Y, Tsang NM, Chang YS, Hsueh C . A novel role for TNFAIP2: its correlation with invasion and metastasis in nasopharyngeal carcinoma. Mod Pathol 2011; 24: 175–184.

    Article  CAS  Google Scholar 

  24. Gourzones C, Barjon C, Busson P . Host-tumor interactions in nasopharyngeal carcinomas. Semin Cancer Biol 2012; 22: 127–136.

    Article  CAS  Google Scholar 

  25. Hui EP, Chan AT, Pezzella F, Turley H, To KF, Poon TC et al. Coexpression of hypoxia-inducible factors 1alpha and 2alpha, carbonic anhydrase IX, and vascular endothelial growth factor in nasopharyngeal carcinoma and relationship to survival. Clin Cancer Res 2002; 8: 2595–2604.

    CAS  Google Scholar 

  26. Lo AK, Lo KW, Tsao SW, Wong HL, Hui JW, To KF et al. Epstein-Barr virus infection alters cellular signal cascades in human nasopharyngeal epithelial cells. Neoplasia 2006; 8: 173–180.

    Article  CAS  Google Scholar 

  27. Chen CC, Chen LC, Liang Y, Tsang NM, Chang YS . Epstein-Barr virus latent membrane protein 1 induces the chemotherapeutic target, thymidine phosphorylase, via NF-kappaB and p38 MAPK pathways. Cell Signal 2010; 22: 1132–1142.

    Article  CAS  Google Scholar 

  28. Mattila PK, Lappalainen P . Filopodia: molecular architecture and cellular functions. Nat Rev Mol Cell Biol 2008; 9: 446–454.

    Article  CAS  Google Scholar 

  29. Arjonen A, Kaukonen R, Ivaska J . Filopodia and adhesion in cancer cell motility. Cell Adh Migr 2011; 5: 421–430.

    Article  Google Scholar 

  30. Wolf FW, Sarma V, Seldin M, Drake S, Suchard SJ, Shao H et al. B94, a primary response gene inducible by tumor necrosis factor-alpha, is expressed in developing hematopoietic tissues and the sperm acrosome. J Biol Chem 1994; 269: 3633–3640.

    CAS  Google Scholar 

  31. Rusiniak ME, Yu M, Ross DT, Tolhurst EC, Slack JL . Identification of B94 (TNFAIP2) as a potential retinoic acid target gene in acute promyelocytic leukemia. Cancer Res 2000; 60: 1824–1829.

    CAS  Google Scholar 

  32. Cheng YH, Utsunomiya H, Pavone ME, Yin P, Bulun SE . Retinoic acid inhibits endometrial cancer cell growth via multiple genomic mechanisms. J Mol Endocrinol 2011; 46: 139–153.

    Article  CAS  Google Scholar 

  33. Hong EJ, Sahu B, Janne OA, Hammond GL . Cytoplasmic accumulation of incompletely glycosylated SHBG enhances androgen action in proximal tubule epithelial cells. Mol Endocrinol 2011; 25: 269–281.

    Article  CAS  Google Scholar 

  34. Wang Y, Cui J, Sun X, Zhang Y . Tunneling-nanotube development in astrocytes depends on p53 activation. Cell Death Differ 2011; 18: 732–742.

    Article  CAS  Google Scholar 

  35. Beckers J, Herrmann F, Rieger S, Drobyshev AL, Horsch M, Hrabe de Angelis M et al. Identification and validation of novel ERBB2 (HER2, NEU) targets including genes involved in angiogenesis. Int J Cancer 2005; 114: 590–597.

    Article  CAS  Google Scholar 

  36. Van Prooyen N, Gold H, Andresen V, Schwartz O, Jones K, Ruscetti F et al. Human T-cell leukemia virus type 1 p8 protein increases cellular conduits and virus transmission. Proc Natl Acad Sci USA 2010; 107: 20738–20743.

    Article  CAS  Google Scholar 

  37. Mookherjee N, Brown KL, Bowdish DM, Doria S, Falsafi R, Hokamp K et al. Modulation of the TLR-mediated inflammatory response by the endogenous human host defense peptide LL-37. J Immunol 2006; 176: 2455–2464.

    Article  CAS  Google Scholar 

  38. Marsman J, Horsfield JA . Long distance relationships: enhancer-promoter communication and dynamic gene transcription. Biochim Biophys Acta 2012; 1819: 1217–1227.

    Article  CAS  Google Scholar 

  39. Larkin JD, Cook PR, Papantonis A . Dynamic reconfiguration of long human genes during one transcription cycle. Mol Cell Biol 2012; 32: 2738–2747.

    Article  CAS  Google Scholar 

  40. Abounit S, Zurzolo C . Wiring through tunneling nanotubes—from electrical signals to organelle transfer. J Cell Sci 2012; 125: 1089–1098.

    Article  CAS  Google Scholar 

  41. Kimura S, Hase K, Ohno H . Tunneling nanotubes: emerging view of their molecular components and formation mechanisms. Exp Cell Res 2012; 318: 1699–1706.

    Article  CAS  Google Scholar 

  42. Davis DM, Sowinski S . Membrane nanotubes: dynamic long-distance connections between animal cells. Nat Rev Mol Cell Biol 2008; 9: 431–436.

    Article  CAS  Google Scholar 

  43. Faix J, Rottner K . The making of filopodia. Curr Opin Cell Biol 2006; 18: 18–25.

    Article  CAS  Google Scholar 

  44. Watkins SC, Salter RD . Functional connectivity between immune cells mediated by tunneling nanotubules. Immunity 2005; 23: 309–318.

    Article  CAS  Google Scholar 

  45. Singh SK, Kurfurst R, Nizard C, Schnebert S, Perrier E, Tobin DJ . Melanin transfer in human skin cells is mediated by filopodia—a model for homotypic and heterotypic lysosome-related organelle transfer. FASEB J 2010; 24: 3756–3769.

    Article  CAS  Google Scholar 

  46. Smith IF, Shuai J, Parker I . Active generation and propagation of Ca2+ signals within tunneling membrane nanotubes. Biophys J 2011; 100: L37–L39.

    Article  CAS  Google Scholar 

  47. Sowinski S, Jolly C, Berninghausen O, Purbhoo MA, Chauveau A, Kohler K et al. Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission. Nat Cell Biol 2008; 10: 211–219.

    Article  CAS  Google Scholar 

  48. Mothes W, Sherer NM, Jin J, Zhong P . Virus cell-to-cell transmission. J Virol 2010; 84: 8360–8368.

    Article  CAS  Google Scholar 

  49. Sherer NM, Jin J, Mothes W . Directional spread of surface-associated retroviruses regulated by differential virus-cell interactions. J Virol 2010; 84: 3248–3258.

    Article  CAS  Google Scholar 

  50. Sherer NM, Mothes W . Cytonemes and tunneling nanotubules in cell-cell communication and viral pathogenesis. Trends Cell Biol 2008; 18: 414–420.

    Article  CAS  Google Scholar 

  51. Chinnery HR, Pearlman E, McMenamin PG . Cutting edge: membrane nanotubes in vivo: a feature of MHC class II+ cells in the mouse cornea. J Immunol 2008; 180: 5779–5783.

    Article  CAS  Google Scholar 

  52. Ranzinger J, Rustom A, Abel M, Leyh J, Kihm L, Witkowski M et al. Nanotube action between human mesothelial cells reveals novel aspects of inflammatory responses. PLoS One 2011; 6: e29537.

    Article  CAS  Google Scholar 

  53. Kondratiev S, Duraisamy S, Unitt CL, Green MR, Pinkus GS, Shipp MA et al. Aberrant expression of the dendritic cell marker TNFAIP2 by the malignant cells of Hodgkin lymphoma and primary mediastinal large B-cell lymphoma distinguishes these tumor types from morphologically and phenotypically similar lymphomas. Am J Surg Pathol 2011; 35: 1531–1539.

    Article  Google Scholar 

  54. Slaby O, Sachlova M, Brezkova V, Hezova R, Kovarikova A, Bischofova S et al. Identification of microRNAs regulated by isothiocyanates and association of polymorphisms inside their target sites with risk of sporadic colorectal cancer. Nutr Cancer 2013; 65: 247–254.

    Article  CAS  Google Scholar 

  55. Liu Z, Wei S, Ma H, Zhao M, Myers JN, Weber RS et al. A functional variant at the miR-184 binding site in TNFAIP2 and risk of squamous cell carcinoma of the head and neck. Carcinogenesis 2011; 32: 1668–1674.

    Article  CAS  Google Scholar 

  56. Liu HP, Wu CC, Chang YS . PRA1 promotes the intracellular trafficking and NF-kappaB signaling of EBV latent membrane protein 1. EMBO J 2006; 25: 4120–4130.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Ms Jennifer Cheng for her technical assistance in image acquisition and analysis using the IN Cell Analyzer 2000. This work was supported by the grant from the Ministry of Education of Taiwan (to Chang Gung University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y-S Chang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, CC., Liu, HP., Chao, M. et al. NF-κB-mediated transcriptional upregulation of TNFAIP2 by the Epstein–Barr virus oncoprotein, LMP1, promotes cell motility in nasopharyngeal carcinoma. Oncogene 33, 3648–3659 (2014). https://doi.org/10.1038/onc.2013.345

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.345

Keywords

This article is cited by

Search

Quick links