Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

S100A14 suppresses metastasis of nasopharyngeal carcinoma by inhibition of NF-kB signaling through degradation of IRAK1

Abstract

Nasopharyngeal carcinoma (NPC) is a unique head and neck cancer with highly aggressive and metastatic potential in which distant metastasis is the main reason for treatment failure. Till present, the underlying molecular mechanisms of NPC metastasis remains poorly understood. Here, we identified S100 calcium-binding protein A14 (S100A14) as a functional regulator suppressing NPC metastasis by inhibiting the NF-kB signaling pathway and reversing the epithelial–mesenchymal transition (EMT). S100A14 was found to be downregulated in highly metastatic NPC cells and tissues. Immunohistochemical staining of 202 NPC samples revealed that lower S100A14 expression was significantly correlated with shorter patient overall survival (OS) and distant metastasis-free survival (DMFS). S100A14 was also found as an independent prognostic factor for favorable survival. Gain- and loss-of-function studies confirmed that S100A14 suppressed the in vitro and in vivo motility of NPC cells. Mechanistically, S100A14 promoted the ubiquitin-proteasome-mediated degradation of interleukin-1 receptor-associated kinase 1 (IRAK1) to suppress NPC cellular migration. Moreover, S100A14 and IRAK1 established a feedback loop that could be disrupted by the IRAK1 inhibitor T2457. Overall, our findings showed that the S100A14-IRAK1 feedback loop could be a promising therapeutic target for NPC metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Reduced S100A14 expression is associated with more aggressive behaviors of NPC cells as well as shorter patient overall survival and distant metastasis free-survival.
Fig. 2: S100A14 suppresses the migration and invasion of NPC cells in vitro.
Fig. 3: S100A14 suppresses the metastasis of NPC cells in vivo.
Fig. 4: S100A14 suppresses NPC cell migration by inhibiting NF-KB signaling.
Fig. 5: S100A14 promotes ubiquitin–proteasome-mediated degradation of IRAK1.
Fig. 6: S100A14 forms a feedback loop with IRAK1 to suppress the migration of NPC cells.
Fig. 7: Schematic illustration depicting the role of S100A14 in suppressing tumor metastasis and chemoresistance.

Similar content being viewed by others

References

  1. Chen YP, Chan ATC, Le QT, Blanchard P, Sun P, Ma Y. Nasopharyngeal carcinoma. Lancet. 2019;394:64–80.

    PubMed  Google Scholar 

  2. Cao SM, Simons MJ, Qian CN. The prevalence and prevention of nasopharyngeal carcinoma in China. Chin J Cancer. 2011;30:114–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J Clin. 2018;68:394–424.

    Google Scholar 

  4. Feng RM, Zong YN, Cao SM, Xu RH. Current cancer situation in China: good or bad news from the 2018 Global Cancer Statistics? Cancer Commun. 2019;39:22.

    Google Scholar 

  5. Blanchard P, Lee A, Marguet S, Leclercq J, Ng WT, Ma J, et al. Chemotherapy and radiotherapy in nasopharyngeal carcinoma: an update of the MAC-NPC meta-analysis. Lancet Oncol. 2015;16:645–55.

    PubMed  Google Scholar 

  6. Colevas AD, Yom SS, Pfister DG, Spencer S, Adelstein D, Adkins D, et al. NCCN Guidelines Insights: head and neck cancers, Version 1.2018. J Natl Compr Cancer Netw. 2018;16:479–90.

    Google Scholar 

  7. Li YY, Chung GT, Lui VW, To KF, Ma BB, Chow C, et al. Exome and genome sequencing of nasopharynx cancer identifies NF-kappaB pathway activating mutations. Nat Commun. 2017;8:14121.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Yi M, Cai J, Li J, Chen S, Zeng Z, Peng Q, et al. Rediscovery of NF-kappaB signaling in nasopharyngeal carcinoma: How genetic defects of NF-kappaB pathway interplay with EBV in driving oncogenesis? J Cell Physiol. 2018;233:5537–49.

    CAS  PubMed  Google Scholar 

  9. Chou J, Lin YC, Kim J, You L, Xu Z, He B, et al. Nasopharyngeal carcinoma-review of the molecular mechanisms of tumorigenesis. Head Neck. 2008;30:946–63.

    PubMed  PubMed Central  Google Scholar 

  10. Donato R, Cannon BR, Sorci G, Riuzzi F, Hsu K, Weber DJ, et al. Functions of S100 proteins. Curr Mol Med. 2013;13:24–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Bresnick AR, Weber DJ, Zimmer DB. S100 proteins in cancer. Nat Rev Cancer. 2015;15:96–109.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Jin Q, Chen H, Luo A, Ding F, Liu Z. S100A14 stimulates cell proliferation and induces cell apoptosis at different concentrations via receptor for advanced glycation end products (RAGE). PloS ONE. 2011;6:e19375.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Xu C, Chen H, Wang X, Gao J, Che Y, Li Y, et al. S100A14, a member of the EF-hand calcium-binding proteins, is overexpressed in breast cancer and acts as a modulator of HER2 signaling. J Biol Chem. 2014;289:827–37.

    CAS  PubMed  Google Scholar 

  14. Bigelow RL, Williams BJ, Carroll JL, Daves LK, Cardelli JA. TIMP-1 overexpression promotes tumorigenesis of MDA-MB-231 breast cancer cells and alters expression of a subset of cancer promoting genes in vivo distinct from those observed in vitro. Breast Cancer Res Treat. 2009;117:31–44.

    CAS  PubMed  Google Scholar 

  15. Zhu M, Wang H, Cui J, Li W, An G, Pan Y, et al. Calcium-binding protein S100A14 induces differentiation and suppresses metastasis in gastric cancer. Cell Death Dis. 2017;8:e2938.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Li XJ, Ong CK, Cao Y, Xiang YQ, Shao JY, Ooi A, et al. Serglycin is a theranostic target in nasopharyngeal carcinoma that promotes metastasis. Cancer Res. 2011;71:3162–72.

    CAS  PubMed  Google Scholar 

  17. Brabletz T, Kalluri R, Nieto MA, Weinberg RA. EMT in cancer. Nat Rev Cancer. 2018;18:128–34.

    CAS  PubMed  Google Scholar 

  18. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139:871–90.

    CAS  PubMed  Google Scholar 

  19. Windheim M, Stafford M, Peggie M, Cohen P. Interleukin-1 (IL-1) induces the Lys63-linked polyubiquitination of IL-1 receptor-associated kinase 1 to facilitate NEMO binding and the activation of IkappaBalpha kinase. Mol Cell Biol. 2008;28:1783–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Rhyasen GW, Bolanos L, Fang J, Jerez A, Wunderlich M, Rigolino C, et al. Targeting IRAK1 as a therapeutic approach for myelodysplastic syndrome. Cancer Cell. 2013;24:90–104.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Srivastava R, Geng D, Liu Y, Zheng L, Li Z, Joseph MA, et al. Augmentation of therapeutic responses in melanoma by inhibition of IRAK-1,-4. Cancer Res. 2012;72:6209–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Li Z, Younger K, Gartenhaus R, Joseph AM, Hu F, Baer MR, et al. Inhibition of IRAK1/4 sensitizes T cell acute lymphoblastic leukemia to chemotherapies. J Clin Investig. 2015;125:1081–97.

    PubMed  Google Scholar 

  23. Wee ZN, Yatim SM, Kohlbauer VK, Feng M, Goh JY, Bao Y, et al. IRAK1 is a therapeutic target that drives breast cancer metastasis and resistance to paclitaxel. Nat Commun. 2015;6:8746.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Smith H, Peggie M, Campbell DG, Vandermoere F, Carrick E, Cohen P. Identification of the phosphorylation sites on the E3 ubiquitin ligase Pellino that are critical for activation by IRAK1 and IRAK4. Proc Natl Acad Sci USA. 2009;106:4584–90.

    CAS  PubMed  Google Scholar 

  25. Ordureau A, Smith H, Windheim M, Peggie M, Carrick E, Morrice N, et al. The IRAK-catalysed activation of the E3 ligase function of Pellino isoforms induces the Lys63-linked polyubiquitination of IRAK1. Biochem J. 2008;409:43–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Meng DF, Sun R, Peng LX, Huang YS, Yang Q, Luo DH, et al. A comparison of weekly versus 3-weekly cisplatin during concurrent chemoradiotherapy for locoregionally advanced nasopharyngeal carcinoma using intensity modulated radiation therapy: a matched study. J Cancer. 2018;9:92–9.

    PubMed  PubMed Central  Google Scholar 

  27. Qian CN, Mei Y, Zhang J. Cancer metastasis: issues and challenges. Chin J Cancer. 2017;36:38.

    PubMed  PubMed Central  Google Scholar 

  28. Zhang W, Wang H, Sun M, Deng X, Wu X, Ma Y, et al. CXCL5/CXCR2 axis in tumor microenvironment as potential diagnostic biomarker and therapeutic target. Cancer Commun. 2020;40:69–80.

    Google Scholar 

  29. Kwon CH, Moon HJ, Park HJ, Choi JH, Park DY. S100A8 and S100A9 promotes invasion and migration through p38 mitogen-activated protein kinase-dependent NF-kappaB activation in gastric cancer cells. Molecules Cells. 2013;35:226–34.

    CAS  PubMed  Google Scholar 

  30. Ichikawa M, Williams R, Wang L, Vogl T, Srikrishna G. S100A8/A9 activate key genes and pathways in colon tumor progression. Mol Cancer Res. 2011;9:133–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Bulk E, Sargin B, Krug U, Hascher A, Jun Y, Knop M, et al. S100A2 induces metastasis in non-small cell lung cancer. Clin Cancer Res. 2009;15:22–29.

    CAS  PubMed  Google Scholar 

  32. Tsai WC, Tsai ST, Jin YT, Wu LW. Cyclooxygenase-2 is involved in S100A2-mediated tumor suppression in squamous cell carcinoma. Mol Cancer Res. 2006;4:539–47.

    CAS  PubMed  Google Scholar 

  33. Basnet S, Sharma S, Costea DE, Sapkota D. Expression profile and functional role of S100A14 in human cancer. Oncotarget. 2019;10:2996–3012.

    PubMed  PubMed Central  Google Scholar 

  34. Chen H, Yu D, Luo A, Tan W, Zhang C, Zhao D, et al. Functional role of S100A14 genetic variants and their association with esophageal squamous cell carcinoma. Cancer Res. 2009;69:3451–7.

    CAS  PubMed  Google Scholar 

  35. Chen H, Ma J, Sunkel B, Luo A, Ding F, Li Y, et al. S100A14: novel modulator of terminal differentiation in esophageal cancer. Mol Cancer Res. 2013;11:1542–53.

    CAS  PubMed  Google Scholar 

  36. Sapkota D, Costea DE, Blo M, Bruland O, Lorens JB, Vasstrand EN, et al. S100A14 inhibits proliferation of oral carcinoma derived cells through G1-arrest. Oral Oncol. 2012;48:219–25.

    CAS  PubMed  Google Scholar 

  37. Sapkota D, Bruland O, Costea DE, Haugen H, Vasstrand EN, Ibrahim SO. S100A14 regulates the invasive potential of oral squamous cell carcinoma derived cell-lines in vitro by modulating expression of matrix metalloproteinases, MMP1 and MMP9. Eur J Cancer. 2011;47:600–10.

    CAS  PubMed  Google Scholar 

  38. Xiong TF, Pan FQ, Li D. Expression and clinical significance of S100 family genes in patients with melanoma. Melanoma Res. 2019;29:23–9.

    CAS  PubMed  Google Scholar 

  39. Lesniak W. Epigenetic regulation of S100 protein expression. Clin Epigenet. 2011;2:77–83.

    CAS  Google Scholar 

  40. Lesniak W, Slomnicki LP, Kuznicki J. Epigenetic control of the S100A6 (calcyclin) gene expression. J Investig. Dermatol. 2007;127:2307–14.

    CAS  PubMed  Google Scholar 

  41. Lindsey JC, Lusher ME, Anderton JA, Gilbertson RJ, Ellison DW, Clifford SC. Epigenetic deregulation of multiple S100 gene family members by differential hypomethylation and hypermethylation events in medulloblastoma. Br J Cancer. 2007;97:267–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang XH, Zhang LH, Zhong XY, Xing XF, Liu YQ, Niu ZJ, et al. S100A6 overexpression is associated with poor prognosis and is epigenetically up-regulated in gastric cancer. Am J Pathol. 2010;177:586–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Graczyk A, Lesniak W. S100A6 expression in keratinocytes and its impact on epidermal differentiation. Int J Biochem Cell Biol. 2014;57:135–41.

    CAS  PubMed  Google Scholar 

  44. Goh JY, Feng M, Wang W, Oguz G, Yatim S, Lee PL, et al. Chromosome 1q21.3 amplification is a trackable biomarker and actionable target for breast cancer recurrence. Nat Med. 2017;23:1319–30.

    CAS  PubMed  Google Scholar 

  45. Gallo LH, Ko J, Donoghue DJ. The importance of regulatory ubiquitination in cancer and metastasis. Cell Cycle. 2017;16:634–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Filipek A. S100A6 and CacyBP/SIP—two proteins discovered in ehrlich ascites tumor cells that are potentially involved in the degradation of beta-catenin. Chemotherapy. 2006;52:32–4.

    CAS  PubMed  Google Scholar 

  47. Schneider G, Filipek A. S100A6 binding protein and Siah-1 interacting protein (CacyBP/SIP): spotlight on properties and cellular function. Amino Acids. 2011;41:773–80.

    CAS  PubMed  Google Scholar 

  48. Feng S, Zhou Q, Yang B, Li Q, Liu A, Zhao Y, et al. The effect of S100A6 on nuclear translocation of CacyBP/SIP in colon cancer cells. PloS ONE. 2018;13:e0192208.

    PubMed  PubMed Central  Google Scholar 

  49. Li X, Commane M, Jiang Z, Stark GR. IL-1-induced NFkappa B and c-Jun N-terminal kinase (JNK) activation diverge at IL-1 receptor-associated kinase (IRAK). Proc Natl Acad Sci USA. 2001;98:4461–5.

    CAS  PubMed  Google Scholar 

  50. Knop J, Martin MU. Effects of IL-1 receptor-associated kinase (IRAK) expression on IL-1 signaling are independent of its kinase activity. FEBS Lett. 1999;448:81–5.

    CAS  PubMed  Google Scholar 

  51. Gottipati S, Rao NL, Fung-Leung WP. IRAK1: a critical signaling mediator of innate immunity. Cell Signal. 2008;20:269–76.

    CAS  PubMed  Google Scholar 

  52. Dumbrepatil AB, Ghosh S, Zegalia KA, Malec PA, Hoff JD, Kennedy RT, et al. Viperin interacts with the kinase IRAK1 and the E3 ubiquitin ligase TRAF6, coupling innate immune signaling to antiviral ribonucleotide synthesis. J Biol Chem. 2019;294:6888–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Schauvliege R, Janssens S, Beyaert R. Pellino proteins are more than scaffold proteins in TLR/IL-1R signalling: a role as novel RING E3-ubiquitin-ligases. FEBS Lett. 2006;580:4697–702.

    CAS  PubMed  Google Scholar 

  54. Wang C, Deng L, Hong M, Akkaraju GR, Inoue J, Chen ZJ. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature. 2001;412:346–51.

    CAS  PubMed  Google Scholar 

  55. Taniguchi K, Karin M. NF-kappaB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol. 2018;18:309–24.

    CAS  PubMed  Google Scholar 

  56. DiDonato JA, Mercurio F, Karin M. NF-kappaB and the link between inflammation and cancer. Immunol. Rev. 2012;246:379–400.

    PubMed  Google Scholar 

  57. Xu L, Huang TJ, Hu H, Wang MY, Shi SM, Yang Q, et al. The developmental transcription factor IRF6 attenuates ABCG2 gene expression and distinctively reverses stemness phenotype in nasopharyngeal carcinoma. Cancer Lett. 2018;431:230–43.

    CAS  PubMed  Google Scholar 

  58. Zheng LS, Yang JP, Cao Y, Peng LX, Sun R, Xie P, et al. SPINK6 promotes metastasis of nasopharyngeal carcinoma via binding and activation of epithelial growth factor receptor. Cancer Res. 2017;77:579–89.

    CAS  PubMed  Google Scholar 

  59. Meng DF, Xie P, Peng LX, Sun R, Luo DH, Chen QY, et al. CDC42-interacting protein 4 promotes metastasis of nasopharyngeal carcinoma by mediating invadopodia formation and activating EGFR signaling. J Exp Clin Cancer Res. 2017;36:21.

    PubMed  PubMed Central  Google Scholar 

  60. Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001;410:50–6.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (Nos. 81872384, 81672872, and 81472386 to C.Q., Nos. 81972785, 81773162, and 81572901 to B.H., No. 81902974 to P.X.), the Science and Technology Planning Project of Guangdong Province, China (No. 2013B021800065 to R.S.), the Provincial Natural Science Foundation of Guangdong, China (No. 2016A030311011 to C.Q., No. 2017A030313866 to B.H.), the Provincial Natural Science Foundation of Fujian, China (No. 2019J05008 to P.X.), and a research program from Sun Yat-sen University (No. 84000-18843409 to C.Q.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao-Nan Qian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, DF., Sun, R., Liu, GY. et al. S100A14 suppresses metastasis of nasopharyngeal carcinoma by inhibition of NF-kB signaling through degradation of IRAK1. Oncogene 39, 5307–5322 (2020). https://doi.org/10.1038/s41388-020-1363-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-1363-8

This article is cited by

Search

Quick links