Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A peptide that inhibits function of Myristoylated Alanine-Rich C Kinase Substrate (MARCKS) reduces lung cancer metastasis

Abstract

Myristoylated Alanine-Rich C Kinase Substrate (MARCKS), a substrate of protein kinase C, is a key regulatory molecule controlling mucus granule secretion by airway epithelial cells as well as directed migration of leukocytes, stem cells and fibroblasts. Phosphorylation of MARKCS may be involved in these responses. However, the functionality of MARCKS and its related phosphorylation in lung cancer malignancy have not been characterized. This study demonstrated elevated levels of MARCKS and phospho-MARCKS in highly invasive lung cancer cell lines and lung cancer specimens from non-small-cell lung cancer patients. siRNA knockdown of MARCKS expression in these highly invasive lung cancer cell lines reduced cell migration and suppressed PI3K (phosphatidylinositol 3′-kinase)/Akt phosphorylation and Slug level. Interestingly, treatment with a peptide identical to the MARCKS N-terminus sequence (the MANS peptide) impaired cell migration in vitro and also the metastatic potential of invasive lung cancer cells in vivo. Mechanistically, MANS peptide treatment resulted in a coordination of increase of E-cadherin expression, suppression of MARCKS phosphorylation and AKT/Slug signalling pathway but not the expression of total MARCKS. These results indicate a crucial role for MARCKS, specifically its phosphorylated form, in potentiating lung cancer cell migration/metastasis and suggest a potential use of MARCKS-related peptides in the treatment of lung cancer metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Valastyan S, Weinberg RA . Tumor metastasis: molecular insights and evolving paradigms. Cell 2011; 147: 275–292.

    Article  CAS  Google Scholar 

  2. Teicher BA . Protein kinase C as a therapeutic target. Clin Cancer Res 2006; 12: 5336–5345.

    Article  CAS  Google Scholar 

  3. Roffey J, Rosse C, Linch M, Hibbert A, McDonald NQ, Parker PJ . Protein kinase C intervention: the state of play. Curr Opin Cell Biol 2009; 21: 268–279.

    Article  CAS  Google Scholar 

  4. Harlan DM, Graff JM, Stumpo DJ, Eddy RL Jr, Shows TB, Boyle JM et al. The human myristoylated alanine-rich C kinase substrate (MARCKS) gene (MACS). Analysis of its gene product, promoter, and chromosomal localization. J Biol Chem 1991; 266: 14399–14405.

    CAS  Google Scholar 

  5. Thelen M, Rosen A, Nairn AC, Aderem A . Regulation by phosphorylation of reversible association of a myristoylated protein kinase C substrate with the plasma membrane. Nature 1991; 351: 320–322.

    Article  CAS  Google Scholar 

  6. Nairn AC, Aderem A . Calmodulin and protein kinase C cross-talk: the MARCKS protein is an actin filament and plasma membrane cross-linking protein regulated by protein kinase C phosphorylation and by calmodulin. Ciba Found Symp 1992; 164: 145–154 discussion 154-161.

    CAS  Google Scholar 

  7. Li Y, Martin LD, Spizz G, Adler KB . MARCKS protein is a key molecule regulating mucin secretion by human airway epithelial cells in vitro. J Biol Chem 2001; 276: 40982–40990.

    Article  CAS  Google Scholar 

  8. Ohmitsu M, Fukunaga K, Yamamoto H, Miyamoto E . Phosphorylation of myristoylated alanine-rich protein kinase C substrate by mitogen-activated protein kinase in cultured rat hippocampal neurons following stimulation of glutamate receptors. J Biol Chem 1999; 274: 408–417.

    Article  CAS  Google Scholar 

  9. Tatsumi S, Mabuchi T, Katano T, Matsumura S, Abe T, Hidaka H et al. Involvement of Rho-kinase in inflammatory and neuropathic pain through phosphorylation of myristoylated alanine-rich C-kinase substrate (MARCKS). Neuroscience 2005; 131: 491–498.

    Article  CAS  Google Scholar 

  10. Tanabe A, Kamisuki Y, Hidaka H, Suzuki M, Negishi M, Takuwa Y . PKC phosphorylates MARCKS Ser159 not only directly but also through RhoA/ROCK. Biochem Biophys Res Commun 2006; 345: 156–161.

    Article  CAS  Google Scholar 

  11. Chen Y, Wang D, Guo Z, Zhao J, Wu B, Deng H et al. Rho kinase phosphorylation promotes ezrin-mediated metastasis in hepatocellular carcinoma. Cancer Res 2011; 71: 1721–1729.

    Article  CAS  Google Scholar 

  12. Liu S, Goldstein RH, Scepansky EM, Rosenblatt M . Inhibition of rho-associated kinase signaling prevents breast cancer metastasis to human bone. Cancer Res 2009; 69: 8742–8751.

    Article  CAS  Google Scholar 

  13. Rath N, Olson MF . Rho-associated kinases in tumorigenesis: re-considering ROCK inhibition for cancer therapy. EMBO Rep 2012; 13: 900–908.

    Article  CAS  Google Scholar 

  14. Techasen A, Loilome W, Namwat N, Takahashi E, Sugihara E, Puapairoj A et al. Myristoylated alanine-rich C kinase substrate phosphorylation promotes cholangiocarcinoma cell migration and metastasis via the protein kinase C-dependent pathway. Cancer Sci 2010; 101: 658–665.

    Article  CAS  Google Scholar 

  15. Reddy MM, Fernandes MS, Salgia R, Levine RL, Griffin JD, Sattler M . NADPH oxidases regulate cell growth and migration in myeloid cells transformed by oncogenic tyrosine kinases. Leukemia 2011; 25: 281–289.

    Article  CAS  Google Scholar 

  16. Yokoyama Y, Ito T, Hanson V, Schwartz GK, Aderem AA, Holland JF et al. PMA-induced reduction in invasiveness is associated with hyperphosphorylation of MARCKS and talin in invasive bladder cancer cells. Int J Cancer 1998; 75: 774–779.

    Article  CAS  Google Scholar 

  17. Michel S, Kloor M, Singh S, Gdynia G, Roth W, von Knebel Doeberitz M et al. Coding microsatellite instability analysis in microsatellite unstable small intestinal adenocarcinomas identifies MARCKS as a common target of inactivation. Mol Carcinog 2010; 49: 175–182.

    CAS  Google Scholar 

  18. Chen X, Rotenberg SA . PhosphoMARCKS drives motility of mouse melanoma cells. Cell Signal 2010; 22: 1097–1103.

    Article  CAS  Google Scholar 

  19. Micallef J, Taccone M, Mukherjee J, Croul S, Busby J, Moran MF et al. Epidermal growth factor receptor variant III-induced glioma invasion is mediated through myristoylated alanine-rich protein kinase C substrate overexpression. Cancer Res 2009; 69: 7548–7556.

    Article  CAS  Google Scholar 

  20. Jarboe JS, Anderson JC, Duarte CW, Mehta T, Nowsheen S, Hicks PH et al. MARCKS regulates growth and radiation sensitivity and is a novel prognostic factor for glioma. Clin Cancer Res 2012; 18: 3030–3041.

    Article  CAS  Google Scholar 

  21. Brooks G, Brooks SF, Goss MW . MARCKS functions as a novel growth suppressor in cells of melanocyte origin. Carcinogenesis 1996; 17: 683–689.

    Article  CAS  Google Scholar 

  22. Singer M, Martin LD, Vargaftig BB, Park J, Gruber AD, Li Y et al. A MARCKS-related peptide blocks mucus hypersecretion in a mouse model of asthma. Nat Med 2004; 10: 193–196.

    Article  CAS  Google Scholar 

  23. Takashi S, Park J, Fang S, Koyama S, Parikh I, Adler KB . A peptide against the N-terminus of myristoylated alanine-rich C kinase substrate inhibits degranulation of human leukocytes in vitro. Am J Respir Cell Mol Biol 2006; 34: 647–652.

    Article  CAS  Google Scholar 

  24. Eckert RE, Neuder LE, Park J, Adler KB, Jones SL . Myristoylated alanine-rich C-kinase substrate (MARCKS) protein regulation of human neutrophil migration. Am J Respir Cell Mol Biol 2010; 42: 586–594.

    Article  CAS  Google Scholar 

  25. Chu YW, Yang PC, Yang SC, Shyu YC, Hendrix MJ, Wu R et al. Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line. Am J Respir Cell Mol Biol 1997; 17: 353–360.

    Article  CAS  Google Scholar 

  26. Gonzalez-Guerrico AM, Meshki J, Xiao L, Benavides F, Conti CJ, Kazanietz MG . Molecular mechanisms of protein kinase C-induced apoptosis in prostate cancer cells. J Biochem Mol Biol 2005; 38: 639–645.

    CAS  Google Scholar 

  27. Kim J, Thorne SH, Sun L, Huang B, Mochly-Rosen D . Sustained inhibition of PKCalpha reduces intravasation and lung seeding during mammary tumor metastasis in an in vivo mouse model. Oncogene 2011; 30: 323–333.

    Article  CAS  Google Scholar 

  28. Naylor TL, Tang H, Ratsch BA, Enns A, Loo A, Chen L et al. Protein kinase C inhibitor sotrastaurin selectively inhibits the growth of CD79 mutant diffuse large B-cell lymphomas. Cancer Res 2011; 71: 2643–2653.

    Article  CAS  Google Scholar 

  29. Shih JY, Tsai MF, Chang TH, Chang YL, Yuan A, Yu CJ et al. Transcription repressor slug promotes carcinoma invasion and predicts outcome of patients with lung adenocarcinoma. Clin Cancer Res 2005; 11: 8070–8078.

    Article  CAS  Google Scholar 

  30. Zhang K, Zhang M, Zhao H, Yan B, Zhang D, Liang J . S100A4 regulates motility and invasiveness of human esophageal squamous cell carcinoma through modulating the AKT/Slug signal pathway. Dis Esophagus 2012; 25: 731–739.

    Article  CAS  Google Scholar 

  31. Garcia J, Sandi MJ, Cordelier P, Binétruy B, Pouysségur J, Iovanna JL et al. Tie1 deficiency induces endothelial-mesenchymal transition. EMBO Rep 2012; 13: 431–439.

    Article  CAS  Google Scholar 

  32. Lukk M, Kapushesky M, Nikkila J, Parkinson H, Goncalves A, Huber W et al. A global map of human gene expression. Nat Biotechnol 2010; 28: 322–324.

    Article  CAS  Google Scholar 

  33. Hollander MC, Blumenthal GM, Dennis PA . PTEN loss in the continuum of common cancers, rare syndromes and mouse models. Nat Rev Cancer 2011; 11: 289–301.

    Article  CAS  Google Scholar 

  34. McLaughlin S, Murray D . Plasma membrane phosphoinositide organization by protein electrostatics. Nature 2005; 438: 605–611.

    Article  CAS  Google Scholar 

  35. Botto L, Masserini M, Cassetti A, Palestini P . Immunoseparation of Prion protein-enriched domains from other detergent-resistant membrane fractions, isolated from neuronal cells. FEBS Lett 2004; 557: 143–147.

    Article  CAS  Google Scholar 

  36. Yamaguchi H, Shiraishi M, Fukami K, Tanabe A, Ikeda-Matsuo Y, Naito Y et al. MARCKS regulates lamellipodia formation induced by IGF-I via association with PIP2 and beta-actin at membrane microdomains. J Cell Physiol 2009; 220: 748–755.

    Article  CAS  Google Scholar 

  37. Kalwa H, Michel T . The MARCKS protein plays a critical role in phosphatidylinositol 4,5-bisphosphate metabolism and directed cell movement in vascular endothelial cells. J Biol Chem 2011; 286: 2320–2330.

    Article  CAS  Google Scholar 

  38. Pollard TD, Borisy GG . Cellular motility driven by assembly and disassembly of actin filaments. Cell 2003; 112: 453–465.

    Article  CAS  Google Scholar 

  39. Yilmaz M, Christofori G . EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev 2009; 28: 15–33.

    Article  Google Scholar 

  40. Yarmola EG, Edison AS, Lenox RH, Bubb MR . Actin filament cross-linking by MARCKS: characterization of two actin-binding sites within the phosphorylation site domain. J Biol Chem 2001; 276: 22351–22358.

    Article  CAS  Google Scholar 

  41. Myat MM, Anderson S, Allen LA, Aderem A . MARCKS regulates membrane ruffling and cell spreading. Curr Biol 1997; 7: 611–614.

    Article  CAS  Google Scholar 

  42. Rombouts K, Carloni V, Mello T, Omenetti S, Galastri S, Madiai S et al. Myristoylated alanine-rich protein kinase C Substrate (MARCKS) expression modulates the metastatic phenotype in human and murine colon carcinoma in vitro and in vivo. Cancer Lett 2013; 333: 244–252.

    Article  CAS  Google Scholar 

  43. Fenouille N, Tichet M, Dufies M, Pottier A, Mogha A, Soo JK et al. The epithelial-mesenchymal transition (EMT) regulatory factor SLUG (SNAI2) is a downstream target of SPARC and AKT in promoting melanoma cell invasion. PLoS One 2012; 7: e40378.

    Article  CAS  Google Scholar 

  44. Shih JY, Yang PC . The EMT regulator slug and lung carcinogenesis. Carcinogenesis 2011; 32: 1299–1304.

    Article  CAS  Google Scholar 

  45. Tauskela JS, Brunette E . Neuroprotection against staurosporine by metalloporphyrins independent of antioxidant capability. Neurosci Lett 2009; 466: 41–46.

    Article  CAS  Google Scholar 

  46. Hanigan MH, Devarajan P . Cisplatin nephrotoxicity: molecular mechanisms. Cancer Ther 2003; 1: 47–61.

    Google Scholar 

  47. Chen JJ, Peck K, Hong TM, Yang SC, Sher YP, Shih JY et al. Global analysis of gene expression in invasion by a lung cancer model. Cancer Res 2001; 61: 5223–5230.

    CAS  Google Scholar 

  48. Mountain CF . Revisions in the International System for Staging Lung Cancer. Chest 1997; 111: 1710–1717.

    Article  CAS  Google Scholar 

  49. Fan T, Li R, Todd NW, Qiu Q, Fang HB, Wang H et al. Up-regulation of 14-3-3zeta in lung cancer and its implication as prognostic and therapeutic target. Cancer Res 2007; 67: 7901–7906.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported, in parts, by Grants from the NIH-NHLBI (HL077902, HL096373, and HL36982).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Wu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, CH., Thai, P., Yoneda, K. et al. A peptide that inhibits function of Myristoylated Alanine-Rich C Kinase Substrate (MARCKS) reduces lung cancer metastasis. Oncogene 33, 3696–3706 (2014). https://doi.org/10.1038/onc.2013.336

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.336

Keywords

This article is cited by

Search

Quick links