Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

H-Ras-driven tumoral maintenance is sustained through caveolin-1-dependent alterations in calcium signaling

Abstract

A growing body of research has highlighted the complex range of tumoral traits acquired during H-Ras-driven transformation and maintenance, which include proliferative signaling, growth suppressor evasion and resistance to cell death. Clear molecular information about these processes is not yet available, but recent evidence has provided solid support for the importance of mitochondria. Here, we show that the induction of oncogenic H-Ras leads to changes in intracellular calcium (Ca2+), evaluate the temporal relationship between oncogene expression and mitochondrial physiology, and demonstrate that Ca2+ homeostasis is altered by caveolin-1, a protein that has a key role in tumor maintenance. Our results indicate that tumor-suppressor caveolin-1 is a core component of the Ca2+-dependent apoptotic pathway and participates in the regulation of critical mitochondrial functions during tumor development. The compromised caveolin-1/Ca2+ axis contributes to failure in both mitochondrial metabolism and apoptosis, thereby sustaining the neoplastic phenotype. These results illustrate a direct link between Ca2+ regulation and mitochondrial biology in cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Malumbres M, Barbacid M . RAS oncogenes: the first 30 years. Nat Rev 2003; 3: 459–465.

    Article  CAS  Google Scholar 

  2. Downward J . Targeting RAS signalling pathways in cancer therapy. Nat Rev 2003; 3: 11–22.

    Article  CAS  Google Scholar 

  3. Chin L, Tam A, Pomerantz J, Wong M, Holash J, Bardeesy N et al. Essential role for oncogenic Ras in tumour maintenance. Nature 1999; 400: 468–472.

    Article  CAS  PubMed  Google Scholar 

  4. Weinstein IB, Joe A . Oncogene addiction. Cancer Res 2008; 68: 3077–3080 discussion 80.

    Article  CAS  PubMed  Google Scholar 

  5. Warburg O, Wind F, Negelein E . The metabolism of tumors in the body. J General Physiol 1927; 8: 519–530.

    Article  CAS  Google Scholar 

  6. Gough DJ, Corlett A, Schlessinger K, Wegrzyn J, Larner AC, Levy DE . Mitochondrial STAT3 supports Ras-dependent oncogenic transformation. Science (New York, NY 2009; 324: 1713–1716.

    Article  CAS  Google Scholar 

  7. Hu Y, Lu W, Chen G, Wang P, Chen Z, Zhou Y et al. K-ras(G12V) transformation leads to mitochondrial dysfunction and a metabolic switch from oxidative phosphorylation to glycolysis. Cell Res 2012; 22: 399–412.

    Article  CAS  PubMed  Google Scholar 

  8. Gogvadze V, Orrenius S, Zhivotovsky B . Mitochondria in cancer cells: what is so special about them? Trends Cell Biol 2008; 18: 165–173.

    Article  CAS  PubMed  Google Scholar 

  9. Kroemer G, Pouyssegur J . Tumor cell metabolism: cancer's Achilles’ heel. Cancer Cell 2008; 13: 472–482.

    Article  CAS  PubMed  Google Scholar 

  10. Giorgi C, Baldassari F, Bononi A, Bonora M, De Marchi E, Marchi S et al. Mitochondrial Ca(2+) and apoptosis. Cell Calcium 2012; 52: 36–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ralph SJ, Rodriguez-Enriquez S, Neuzil J, Saavedra E, Moreno-Sanchez R . The causes of cancer revisited: "mitochondrial malignancy" and ROS-induced oncogenic transformation - why mitochondria are targets for cancer therapy. Mol Aspects Med 2010; 31: 145–170.

    Article  CAS  PubMed  Google Scholar 

  12. Clapham DE . Calcium signaling. Cell 2007; 131: 1047–1058.

    Article  CAS  PubMed  Google Scholar 

  13. Pinton P, Ferrari D, Rapizzi E, Di Virgilio F, Pozzan T, Rizzuto R . The Ca2+ concentration of the endoplasmic reticulum is a key determinant of ceramide-induced apoptosis: significance for the molecular mechanism of Bcl-2 action. EMBO J 2001; 20: 2690–2701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu X, Hajnoczky G . Ca2+-dependent regulation of mitochondrial dynamics by the Miro-Milton complex. Int J Biochem Cell Biol 2009; 41: 1972–1976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Giorgi C, Agnoletto C, Bononi A, Bonora M, De Marchi E, Marchi S et al. Mitochondrial calcium homeostasis as potential target for mitochondrial medicine. Mitochondrion 2012; 12: 77–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Peng TI, Jou MJ . Oxidative stress caused by mitochondrial calcium overload. Ann NY Acad Sci 2010; 1201: 183–188.

    Article  CAS  PubMed  Google Scholar 

  17. Berridge MJ, Lipp P, Bootman MD . The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 2000; 1: 11–21.

    Article  CAS  PubMed  Google Scholar 

  18. Simons K, Toomre D . Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 2000; 1: 31–39.

    Article  CAS  PubMed  Google Scholar 

  19. Thomas CM, Smart EJ . Caveolae structure and function. J Cell Mol Med 2008; 12: 796–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Razani B, Schlegel A, Lisanti MP . Caveolin proteins in signaling, oncogenic transformation and muscular dystrophy. J Cell Sci 2000; 113 (Pt 12): 2103–2109.

    CAS  PubMed  Google Scholar 

  21. Williams TM, Lisanti MP . The Caveolin genes: from cell biology to medicine. Ann Med 2004; 36: 584–595.

    Article  CAS  PubMed  Google Scholar 

  22. Patel HH, Murray F, Insel PA . Caveolae as organizers of pharmacologically relevant signal transduction molecules. Annu Rev Pharmacol Toxicol 2008; 48: 359–391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fujimoto T . Calcium pump of the plasma membrane is localized in caveolae. J Cell Biol 1993; 120: 1147–1157.

    Article  CAS  PubMed  Google Scholar 

  24. Fujimoto T, Nakade S, Miyawaki A, Mikoshiba K, Ogawa K . Localization of inositol 1,4,5-trisphosphate receptor-like protein in plasmalemmal caveolae. J Cell Biol 1992; 119: 1507–1513.

    Article  PubMed  Google Scholar 

  25. Jorgensen AO, Shen AC, Arnold W, Leung AT, Campbell KP . Subcellular distribution of the 1,4-dihydropyridine receptor in rabbit skeletal muscle in situ: an immunofluorescence and immunocolloidal gold-labeling study. J Cell Biol 1989; 109: 135–147.

    Article  CAS  PubMed  Google Scholar 

  26. Kifor O, Diaz R, Butters R, Kifor I, Brown EM . The calcium-sensing receptor is localized in caveolin-rich plasma membrane domains of bovine parathyroid cells. J Biol Chem 1998; 273: 21708–21713.

    Article  CAS  PubMed  Google Scholar 

  27. Isshiki M, Ando J, Yamamoto K, Fujita T, Ying Y, Anderson RG . Sites of Ca(2+) wave initiation move with caveolae to the trailing edge of migrating cells. J Cell Sci 2002; 115 (Pt 3): 475–484.

    CAS  PubMed  Google Scholar 

  28. Isshiki M, Anderson RG . Function of caveolae in Ca2+ entry and Ca2+-dependent signal transduction. Traffic (Copenhagen, Denmark) 2003; 4: 717–723.

    Article  CAS  Google Scholar 

  29. Wieckowski MR, Giorgi C, Lebiedzinska M, Duszynski J, Pinton P . Isolation of mitochondria-associated membranes and mitochondria from animal tissues and cells. Nat Protoc 2009; 4: 1582–1590.

    Article  CAS  PubMed  Google Scholar 

  30. Giorgi C, De Stefani D, Bononi A, Rizzuto R, Pinton P . Structural and functional link between the mitochondrial network and the endoplasmic reticulum. Int J Biochem Cell Biol 2009; 41: 1817–1827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Patergnani S, Suski JM, Agnoletto C, Bononi A, Bonora M, De Marchi E et al. Calcium signaling around mitochondria associated membranes (MAMs). Cell Commun Signal 2011; 9: 19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pinton P, Rimessi A, Romagnoli A, Prandini A, Rizzuto R . Biosensors for the detection of calcium and pH. Methods Cell Biol 2007; 80: 297–325.

    Article  CAS  PubMed  Google Scholar 

  33. Pantoja C, Serrano M . Murine fibroblasts lacking p21 undergo senescence and are resistant to transformation by oncogenic Ras. Oncogene 1999; 18: 4974–4982.

    Article  CAS  PubMed  Google Scholar 

  34. Gallimore PH, Grand RJ, Byrd PJ . Transformation of human embryo retinoblasts with simian virus 40, adenovirus and ras oncogenes. Anticancer Res 1986; 6 (3 Pt B): 499–508.

    CAS  PubMed  Google Scholar 

  35. Ferdek PE, Gerasimenko JV, Peng S, Tepikin AV, Petersen OH, Gerasimenko OV . A novel role for Bcl-2 in regulation of cellular calcium extrusion. Curr Biol 2012; 22: 1241–1246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Krejci P, Prochazkova J, Smutny J, Chlebova K, Lin P, Aklian A et al. FGFR3 signaling induces a reversible senescence phenotype in chondrocytes similar to oncogene-induced premature senescence. Bone 2010; 47: 102–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Koleske AJ, Baltimore D, Lisanti MP . Reduction of caveolin and caveolae in oncogenically transformed cells. Proc Natl Acad Sci USA 1995; 92: 1381–1385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hayer A, Stoeber M, Ritz D, Engel S, Meyer HH, Helenius A . Caveolin-1 is ubiquitinated and targeted to intralumenal vesicles in endolysosomes for degradation. J Cell Biol 2010; 191: 615–629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pozzan T, Rizzuto R, Volpe P, Meldolesi J . Molecular and cellular physiology of intracellular calcium stores. Physiol Rev 1994; 74: 595–636.

    Article  CAS  PubMed  Google Scholar 

  40. Lee SW, Reimer CL, Oh P, Campbell DB, Schnitzer JE . Tumor cell growth inhibition by caveolin re-expression in human breast cancer cells. Oncogene 1998; 16: 1391–1397.

    Article  CAS  PubMed  Google Scholar 

  41. Racine C, Belanger M, Hirabayashi H, Boucher M, Chakir J, Couet J . Reduction of caveolin 1 gene expression in lung carcinoma cell lines. Biochem Biophys Res Commun 1999; 255: 580–586.

    Article  CAS  PubMed  Google Scholar 

  42. Bender F, Montoya M, Monardes V, Leyton L, Quest AF . Caveolae and caveolae-like membrane domains in cellular signaling and disease: identification of downstream targets for the tumor suppressor protein caveolin-1. Biol Res 2002; 35: 151–167.

    Article  CAS  PubMed  Google Scholar 

  43. Wiechen K, Diatchenko L, Agoulnik A, Scharff KM, Schober H, Arlt K et al. Caveolin-1 is down-regulated in human ovarian carcinoma and acts as a candidate tumor suppressor gene. Am J Pathol 2001; 159: 1635–1643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wiechen K, Sers C, Agoulnik A, Arlt K, Dietel M, Schlag PM et al. Down-regulation of caveolin-1, a candidate tumor suppressor gene, in sarcomas. Am J Pathol 2001; 158: 833–839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Park DS, Razani B, Lasorella A, Schreiber-Agus N, Pestell RG, Iavarone A et al. Evidence that Myc isoforms transcriptionally repress caveolin-1 gene expression via an INR-dependent mechanism. Biochemistry 2001; 40: 3354–3362.

    Article  CAS  PubMed  Google Scholar 

  46. Liu P, Rudick M, Anderson RG . Multiple functions of caveolin-1. J Biol Chem 2002; 277: 41295–41298.

    Article  CAS  PubMed  Google Scholar 

  47. Rajjayabun PH, Garg S, Durkan GC, Charlton R, Robinson MC, Mellon JK . Caveolin-1 expression is associated with high-grade bladder cancer. Urology 2001; 58: 811–814.

    Article  CAS  PubMed  Google Scholar 

  48. Galbiati F, Volonte D, Engelman JA, Watanabe G, Burk R, Pestell RG et al. Targeted downregulation of caveolin-1 is sufficient to drive cell transformation and hyperactivate the p42/44 MAP kinase cascade. EMBO J 1998; 17: 6633–6648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Volonte D, Zhang K, Lisanti MP, Galbiati F . Expression of caveolin-1 induces premature cellular senescence in primary cultures of murine fibroblasts. Mol Biol Cell 2002; 13: 2502–2517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hulit J, Bash T, Fu M, Galbiati F, Albanese C, Sage DR et al. The cyclin D1 gene is transcriptionally repressed by caveolin-1. J Biol Chem 2000; 275: 21203–21209.

    Article  CAS  PubMed  Google Scholar 

  51. Galbiati F, Volonte D, Liu J, Capozza F, Frank PG, Zhu L et al. Caveolin-1 expression negatively regulates cell cycle progression by inducing G(0)/G(1) arrest via a p53/p21(WAF1/Cip1)-dependent mechanism. Mol Biol Cell 2001; 12: 2229–2244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Song KS, Li S, Okamoto T, Quilliam LA, Sargiacomo M, Lisanti MP . Co-purification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains. Detergent-free purification of caveolae microdomains. J Biol Chem 1996; 271: 9690–9697.

    Article  CAS  PubMed  Google Scholar 

  53. Murata T, Lin MI, Stan RV, Bauer PM, Yu J, Sessa WC . Genetic evidence supporting caveolae microdomain regulation of calcium entry in endothelial cells. J Biol Chem 2007; 282: 16631–16643.

    Article  CAS  PubMed  Google Scholar 

  54. Adebiyi A, Narayanan D, Jaggar JH . Caveolin-1 assembles type 1 inositol 1,4,5-trisphosphate receptors and canonical transient receptor potential 3 channels into a functional signaling complex in arterial smooth muscle cells. J Biol Chem 2011; 286: 4341–4348.

    Article  CAS  PubMed  Google Scholar 

  55. Rimessi A, Giorgi C, Pinton P, Rizzuto R . The versatility of mitochondrial calcium signals: from stimulation of cell metabolism to induction of cell death. Biochimica et biophysica acta 2008; 777: 808–816.

    Article  Google Scholar 

  56. Berridge MV, Tan AS . Effects of mitochondrial gene deletion on tumorigenicity of metastatic melanoma: reassessing the Warburg effect. Rejuvenation Res 2010; 13: 139–141.

    Article  CAS  PubMed  Google Scholar 

  57. Pavlides S, Tsirigos A, Vera I, Flomenberg N, Frank PG, Casimiro MC et al. Transcriptional evidence for the "Reverse Warburg Effect" in human breast cancer tumor stroma and metastasis: similarities with oxidative stress, inflammation, Alzheimer's disease, and "Neuron-Glia Metabolic Coupling". Aging 2010; 2: 185–199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Martinez-Outschoorn UE, Balliet RM, Rivadeneira DB, Chiavarina B, Pavlides S, Wang C et al. Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: A new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells. Cell cycle (Georgetown, Tex) 2010; 9: 3256–3276.

    CAS  Google Scholar 

  59. Guo JY, Chen HY, Mathew R, Fan J, Strohecker AM, Karsli-Uzunbas G et al. Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev 2011; 25: 460–470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sano R, Annunziata I, Patterson A, Moshiach S, Gomero E, Opferman J et al. GM1-ganglioside accumulation at the mitochondria-associated ER membranes links ER stress to Ca(2+)-dependent mitochondrial apoptosis. Mol Cell 2009; 36: 500–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by: the Italian Ministry of Health to AR. SP is supported by a FISM (Fondazione Italiana Sclerosi Multipla) research fellowship (2012/B/11), whereas SM by FIRC (Fondazione Italiana Ricerca sul Cancro) fellowship. PP is financed by Italian Association for Cancer Research (AIRC), Telethon (GGP09128 and GGP11139B), local funds from the University of Ferrara, the Italian Ministry of Education, University and Research (COFIN, FIRB and Futuro in Ricerca), the Italian Cystic Fibrosis Research Foundation and Italian Ministry of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Pinton.

Ethics declarations

Competing interests

The authors declare no conflict of interests.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rimessi, A., Marchi, S., Patergnani, S. et al. H-Ras-driven tumoral maintenance is sustained through caveolin-1-dependent alterations in calcium signaling. Oncogene 33, 2329–2340 (2014). https://doi.org/10.1038/onc.2013.192

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.192

Keywords

This article is cited by

Search

Quick links