Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Matrix metalloprotease 1a deficiency suppresses tumor growth and angiogenesis

Abstract

Matrix metalloprotease-1 (MMP1) is an important mediator of tumorigenesis, inflammation and tissue remodeling through its ability to degrade critical matrix components. Recent studies indicate that stromal-derived MMP1 may exert direct oncogenic activity by signaling through protease-activated receptor-1 (PAR1) in carcinoma cells; however, this has not been established in vivo. We generated an Mmp1a knockout mouse to ascertain whether stromal-derived Mmp1a affects tumor growth. Mmp1a-deficient mice are grossly normal and born in Mendelian ratios; however, deficiency of Mmp1a results in significantly decreased growth and angiogenesis of lung tumors. Coimplantation of lung cancer cells with wild-type Mmp1a+/+ fibroblasts completely restored tumor growth in Mmp1a-deficient animals, highlighting the critical role of stromal-derived Mmp1a. Silencing of PAR1 expression in the lung carcinoma cells phenocopied stromal Mmp1a-deficiency, thus validating tumor-derived PAR1 as an Mmp1a target. Mmp1a secretion is controlled by the ability of its prodomain to facilitate autocleavage, whereas human MMP1 is efficiently secreted because of stable pro- and catalytic domain interactions. Taken together, these data demonstrate that stromal Mmp1a drives in vivo tumorigenesis and provide proof of concept that targeting the MMP1-PAR1 axis may afford effective treatments of lung cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Boström P, Söderström M, Vahlberg T, Söderström K-O, Roberts PJ, Carpén O et al. MMP-1 expression has an independent prognostic value in breast cancer. BMC Cancer 2011; 11: 348.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Smith V, Wirth GJ, Fiebig HH, Burger AM . Tissue microarrays of human tumor xenografts: characterization of proteins involved in migration and angiogenesis for applications in the development of targeted anticancer agents. Cancer Genom Proteom 2008; 5: 263–273.

    CAS  Google Scholar 

  3. Kanamori Y, Matsushima M, Minaguchi T, Kobayashi K, Sagae S, Kudo R et al. Correlation between expression of the matrix metalloproteinase-1 gene in ovarian cancers and an insertion/deletion polymorphism in its promoter region. Cancer Res 1999; 59: 4225–4227.

    CAS  PubMed  Google Scholar 

  4. Nikkola J, Vihinen P, Vlaykova T, Hahka-Kemppinen M, Kähäri V-M, Pyrhönen S . High expression levels of collagenase-1 and stromelysin-1 correlate with shorter disease-free survival in human metastatic melanoma. Int J Cancer 2002; 97: 432–438.

    Article  CAS  PubMed  Google Scholar 

  5. Murray GI, Duncan ME, O'Neil P, Melvin WT, Fothergill JE . Matrix metalloproteinase-1 is associated with poor prognosis in colorectal cancer. Nat Med 1996; 2: 461–462.

    Article  CAS  PubMed  Google Scholar 

  6. Murray GI, Duncan ME, O'Neil P, McKay JA, Melvin WT, Fothergill JE . Matrix metalloproteinase-1 is associated with poor prognosis in oesophageal cancer. J. Pathol 1998; 185: 256–261.

    Article  CAS  PubMed  Google Scholar 

  7. Goldberg GI, Wilhelm SM, Kronberger A, Bauer EA, Grant GA, Eisen AZ . Human fibroblast collagenase. Complete primary structure and homology to an oncogene transformation-induced rat protein. J Biol Chem 1986; 261: 6600–6605.

    CAS  PubMed  Google Scholar 

  8. Egeblad M, Werb Z . New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2002; 2: 161–174.

    Article  CAS  PubMed  Google Scholar 

  9. Boire A, Covic L, Agarwal A, Jacques S, Sherifi S, Kuliopulos A . PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell 2005; 120: 303–313.

    Article  CAS  PubMed  Google Scholar 

  10. Deryugina EI, Quigley JP . Matrix metalloproteinases and tumor metastasis. Cancer Metast Rev 2006; 25: 9–34.

    Article  CAS  Google Scholar 

  11. Eck SM, Blackburn JS, Schmucker AC, Burrage PS, Brinckerhoff CE . Matrix metalloproteinase and G protein coupled receptors: co-conspirators in the pathogenesis of autoimmune disease and cancer. J Autoimmun 2009; 33: 214–221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tressel SL, Kaneider NC, Kasuda S, Foley C, Koukos G, Austin K et al. A matrix metalloprotease-PAR1 system regulates vascular integrity, systemic inflammation and death in sepsis. EMBO Mol Med 2011; 3: 370–384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bolon I, Gouyer V, Devouassoux M, Vandenbunder B, Wernert N, Moro D et al. Expression of c-ets-1, collagenase 1, and urokinase-type plasminogen activator genes in lung carcinomas. Am J Pathol 1995; 147: 1298–1310.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ito M, Ishii G, Nagai K, Maeda R, Nakano Y, Ochiai A . Prognostic impact of cancer-associated stromal cells in stage I lung adenocarcinoma patients. Chest 2012; 142: 151–158.

    Article  PubMed  Google Scholar 

  15. Saarinen J, Welgus HG, Flizar CA, Kalkkinen N, Helin J . N-glycan structures of matrix metalloproteinase-1 derived from human fibroblasts and from HT-1080 fibrosarcoma cells. Eur J Biochem 1999; 259: 829–840.

    Article  CAS  PubMed  Google Scholar 

  16. Balbín M, Fueyo A, Knäuper V, López JM, Alvarez J, Sánchez LM et al. Identification and enzymatic characterization of two diverging murine counterparts of human interstitial collagenase (MMP-1) expressed at sites of embryo implantation. J Biol Chem 2001; 276: 10253–10262.

    Article  PubMed  Google Scholar 

  17. Nuttall RK, Sampieri CL, Pennington CJ, Gill SE, Schultz GA, Edwards DR . Expression analysis of the entire MMP and TIMP gene families during mouse tissue development. FEBS Lett 2004; 563: 129–134.

    Article  CAS  PubMed  Google Scholar 

  18. Hartenstein B, Dittrich BT, Stickens D, Heyer B, Vu TH, Teurich S et al. Epidermal development and wound healing in matrix metalloproteinase 13-deficient mice. J Invest Dermatol 2006; 126: 486–496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pfaffen S, Hemmerle T, Weber M, Neri D . Isolation and characterization of human monoclonal antibodies specific to MMP-1A, MMP-2 and MMP-3. Exp Cell Res 2010; 316: 836–847.

    Article  CAS  PubMed  Google Scholar 

  20. Balbín M, Fueyo A, Tester AM, Pendás AM, Pitiot AS, Astudillo A et al. Loss of collagenase-2 confers increased skin tumor susceptibility to male mice. Nat Genet 2003; 35: 252–257.

    Article  PubMed  Google Scholar 

  21. Stickens D, Behonick DJ, Ortega N, Heyer B, Hartenstein B, Yu Y et al. Altered endochondral bone development in matrix metalloproteinase 13-deficient mice. Development 2004; 131: 5883–5895.

    Article  CAS  PubMed  Google Scholar 

  22. Inada M, Wang Y, Byrne MH, Rahman MU, Miyaura C, Lopez-Otin C et al. Critical roles for collagenase-3 (Mmp13) in development of growth plate cartilage and in endochondral ossification. Proc Natl Acad Sci USA 2004; 101: 17192–17197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bertram JS, Janik P . Establishment of a cloned line of Lewis lung carcinoma cells adapted to cell culture. Cancer Lett 1980; 11: 63–73.

    Article  CAS  PubMed  Google Scholar 

  24. Goerge T, Barg A, Schnaeker E-M, Poppelmann B, Shpacovitch V, Rattenholl A et al. Tumor-derived matrix metalloproteinase-1 targets endothelial proteinase-activated receptor 1 promoting endothelial cell activation. Cancer Res 2006; 66: 7766–7774.

    Article  CAS  PubMed  Google Scholar 

  25. Agarwal A, Tressel SL, Kaimal R, Balla M, Lam FH, Covic L et al. Identification of a metalloprotease–chemokine signaling system in the ovarian cancer microenvironment: implications for antiangiogenic therapy. Cancer Res 2010; 70: 5880–5890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Blackburn JS, Brinckerhoff CE . Matrix metalloproteinase-1 and thrombin differentially activate gene expression in endothelial cells via PAR-1 and promote angiogenesis. Am J Pathol 2008; 173: 1736–1746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Agarwal A, Covic L, Sevigny LM, Kaneider NC, Lazarides K, Azabdaftari G et al. Targeting a metalloprotease–PAR1 signaling system with cell-penetrating pepducins inhibits angiogenesis, ascites, and progression of ovarian cancer. Mol Cancer Therap 2008; 7: 2746–2757.

    Article  CAS  Google Scholar 

  28. Cisowski J, O’Callaghan K, Kuliopulos A, Yang J, Nguyen N, Deng Q et al. Targeting protease-activated receptor-1 with cell-penetrating pepducins in lung cancer. Am J Pathol 2011; 179: 513–523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Foley CJ, Luo C, O'Callaghan K, Hinds PW, Covic L, Kuliopulos A . Matrix metalloprotease-1a promotes tumorigenesis and metastasis. J Biol Chem 2012; 287: 24330–24338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jozic D, Bourenkov G, Lim N-H, Visse R, Nagase H, Bode W et al. X-ray structure of human proMMP-1: new insights into procollagenase activation and collagen binding. J Biol Chem 2005; 280: 9578–9585.

    Article  CAS  PubMed  Google Scholar 

  31. Van Wart HE, Birkedal-Hansen H . The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc Natl Acad Sci USA 1990; 87: 5578–5582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nguyen N, Kuliopulos A, Graham RA, Covic L . Tumor-derived Cyr61(CCN1) promotes stromal matrix metalloproteinase-1 production and protease-activated receptor 1-dependent migration of breast cancer cells. Cancer Res 2006; 66: 2658–2665.

    Article  CAS  PubMed  Google Scholar 

  33. Vizoso FJ, González LO, Corte MD, Rodríguez JC, Vázquez J, Lamelas ML et al. Study of matrix metalloproteinases and their inhibitors in breast cancer. Br J Cancer 2007; 96: 903–911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Heppner KJ, Matrisian LM, Jensen RA, Rodgers WH . Expression of most matrix metalloprotease family members in breast cancer represents a tumor-induced host response. Am J Pathol 1996; 149: 273–282.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Griffin CT, Srinivasan Y, Zheng Y-W, Huang W, Coughlin SRA . Role for thrombin receptor signaling in endothelial cells during embryonic development. Science 2001; 293: 1666–1670.

    Article  CAS  PubMed  Google Scholar 

  36. Odake S, Morita Y, Morikawa T, Yoshida N, Hori H, Nagai Y . Inhibition of matrix metalloproteinases by peptidyl hydroxamic acids. Biochem Biophys Res Commun 1994; 199: 1442–1446.

    Article  CAS  PubMed  Google Scholar 

  37. Vanlaere I, Libert C . Matrix metalloproteinases as drug targets in infections caused by Gram-negative bacteria and in septic shock. Clin Microbiol Rev 2009; 22: 224–239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gearing AJ, Beckett P, Christodoulou M, Churchill M, Clements J, Davidson AH et al. Processing of tumour necrosis factor-alpha precursor by metalloproteinases. Nature 1994; 370: 555–557.

    Article  CAS  PubMed  Google Scholar 

  39. Fowlkes JL, Enghild JJ, Suzuki K, Nagase H . Matrix metalloproteinases degrade insulin-like growth factor-binding protein-3 in dermal fibroblast cultures. J Biol Chem 1994; 269: 25742–25746.

    CAS  PubMed  Google Scholar 

  40. McQuibban GA, Butler GS, Gong JH, Bendall L, Power C, Clark-Lewis I et al. Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1. J Biol Chem 2001; 276: 43503–43508.

    Article  CAS  PubMed  Google Scholar 

  41. Ito A, Mukaiyama A, Itoh Y, Nagase H, Thogersen IB, Enghild JJ et al. Degradation of interleukin 1beta by matrix metalloproteinases. J Biol Chem 1996; 271: 14657–14660.

    Article  CAS  PubMed  Google Scholar 

  42. Schönbeck U, Mach F, Libby P . Generation of biologically active IL-1 beta by matrix metalloproteinases: a novel caspase-1-independent pathway of IL-1 beta processing. J Immunol 1998; 161: 3340–3346.

    PubMed  Google Scholar 

  43. Schwede T, Kopp J, Guex N, Peitsch MC . SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 2003; 31: 3381–3385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Sheida Sharifi for her expertise in quantifying tumor angiogenesis, and Rutika V Pradhan and Namrata Nammi for the analysis of endothelial tube formation. This work was supported, in part, by NIH grants F30-HL104835 (to CJF), CA122992, HL64701 (to AK) and CA104406 (to LC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Kuliopulos.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foley, C., Fanjul-Fernández, M., Bohm, A. et al. Matrix metalloprotease 1a deficiency suppresses tumor growth and angiogenesis. Oncogene 33, 2264–2272 (2014). https://doi.org/10.1038/onc.2013.157

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.157

Keywords

This article is cited by

Search

Quick links