Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

ING4 regulates a secretory phenotype in primary fibroblasts with dual effects on cell proliferation and tumor growth

Abstract

ING proteins have an essential role in the control of a variety of cellular functions whose deregulation is associated with tumor formation and dissemination, such as proliferation, apoptosis, senescence or invasion. Accordingly, loss of function of ING proteins is a frequent event in many types of human tumors. In this report, we have studied the function of ING4, a member of the ING family of tumor suppressors, in the context of normal, non-transformed primary fibroblasts. We show that ING4 negatively regulates cell proliferation in this cell type. The antiproliferative action of ING4 requires its ability to recognize chromatin marks, it is p53-dependent at least in part, and it is lost in an ING4 cancer-associated mutant. Gene expression analysis shows that ING4 regulates the expression and release of soluble factors of the chemokine family. The secretory phenotype regulated by ING4 in primary fibroblasts displays a selective paracrine effect on proliferation, fostering the division of tumor cells, while inhibiting division in primary fibroblasts. Consistently, ING4-expressing fibroblasts promoted tumor growth in vivo in co-injection tumorigenesis assays. Collectively, our results show that ING4 not only can regulate the proliferation of primary non-transformed human fibroblasts, but also orchestrates a secretory phenotype in these cells that promotes tumor cell proliferation in vitro and in vivo. These findings support a critical role for ING4 expression in normal cells in the non-cell-autonomous regulation of tumor growth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Aguissa-Toure AH, Wong RP, Li G . The ING family tumor suppressors: from structure to function. Cell Mol Life Sci 2010; 68: 45–54.

    Article  Google Scholar 

  2. Coles AH, Jones SN . The ING gene family in the regulation of cell growth and tumorigenesis. J Cell Physiol 2009; 218: 45–57.

    Article  CAS  Google Scholar 

  3. Jafarnejad SM, Li G . Regulation of p53 by ING family members in suppression of tumor initiation and progression. Cancer Metastasis Rev 2012; 31: 55–73.

    Article  CAS  Google Scholar 

  4. Ythier D, Larrieu D, Brambilla C, Brambilla E, Pedeux R . The new tumor suppressor genes ING: genomic structure and status in cancer. Int J Cancer 2008; 123: 1483–1490.

    Article  CAS  Google Scholar 

  5. Doyon Y, Cayrou C, Ullah M, Landry AJ, Cote V, Selleck W et al. ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation. Mol Cell 2006; 21: 51–64.

    Article  CAS  Google Scholar 

  6. Pena PV, Davrazou F, Shi X, Walter KL, Verkhusha VV, Gozani O et al. Molecular mechanism of histone H3K4me3 recognition by plant homeodomain of ING2. Nature 2006; 442: 100–103.

    Article  CAS  Google Scholar 

  7. Shiseki M, Nagashima M, Pedeux RM, Kitahama-Shiseki M, Miura K, Okamura S et al. p29ING4 and p28ING5 bind to p53 and p300, and enhance p53 activity. Cancer Res 2003; 63: 2373–2378.

    CAS  Google Scholar 

  8. Kim S, Chin K, Gray JW, Bishop JM . A screen for genes that suppress loss of contact inhibition: identification of ING4 as a candidate tumor suppressor gene in human cancer. Proc Natl Acad Sci USA 2004; 101: 16251–16256.

    Article  CAS  Google Scholar 

  9. Hung T, Binda O, Champagne KS, Kuo AJ, Johnson K, Chang HY et al. ING4 mediates crosstalk between histone H3 K4 trimethylation and H3 acetylation to attenuate cellular transformation. Mol Cell 2009; 33: 248–256.

    Article  CAS  Google Scholar 

  10. Garkavtsev I, Kozin SV, Chernova O, Xu L, Winkler F, Brown E et al. The candidate tumour suppressor protein ING4 regulates brain tumour growth and angiogenesis. Nature 2004; 428: 328–332.

    Article  CAS  Google Scholar 

  11. Shen JC, Unoki M, Ythier D, Duperray A, Varticovski L, Kumamoto K et al. Inhibitor of growth 4 suppresses cell spreading and cell migration by interacting with a novel binding partner, liprin alpha1. Cancer Res 2007; 67: 2552–2558.

    Article  CAS  Google Scholar 

  12. Li J, Martinka M, Li G . Role of ING4 in human melanoma cell migration, invasion and patient survival. Carcinogenesis 2008; 29: 1373–1379.

    Article  Google Scholar 

  13. Moreno A, Palacios A, Orgaz JL, Jimenez B, Blanco FJ, Palmero I . Functional impact of cancer-associated mutations in the tumor suppressor protein ING4. Carcinogenesis 2010; 31: 1932–1938.

    Article  CAS  Google Scholar 

  14. Tapia C, Zlobec I, Schneider S, Kilic E, Guth U, Bubendorf L et al. Deletion of the inhibitor of growth 4 (ING4) tumor suppressor gene is prevalent in human epidermal growth factor 2 (HER2)-positive breast cancer. Hum Pathol 2011; 42: 983–990.

    Article  CAS  Google Scholar 

  15. Coles AH, Gannon H, Cerny A, Kurt-Jones E, Jones SN . Inhibitor of growth-4 promotes IkappaB promoter activation to suppress NF-kappaB signaling and innate immunity. Proc Natl Acad Sci USA 2010; 107: 11423–11428.

    Article  CAS  Google Scholar 

  16. Kuilman T, Michaloglou C, Mooi WJ, Peeper DS . The essence of senescence. Genes Dev 2010; 24: 2463–2479.

    Article  CAS  Google Scholar 

  17. Collado M, Blasco MA, Serrano M . Cellular senescence in cancer and aging. Cell 2007; 130: 223–233.

    Article  CAS  Google Scholar 

  18. Goeman F, Thormeyer D, Abad M, Serrano M, Schmidt O, Palmero I et al. Growth inhibition by the tumor suppressor p33ING1 in immortalized and primary cells: involvement of two silencing domains and effect of Ras. Mol Cell Biol 2005; 25: 422–431.

    Article  CAS  Google Scholar 

  19. Abad M, Moreno A, Palacios A, Narita M, Blanco F, Moreno-Bueno G et al. The tumor suppressor ING1 contributes to epigenetic control of cellular senescence. Aging Cell 2011; 10: 158–171.

    Article  CAS  Google Scholar 

  20. Pedeux R, Sengupta S, Shen JC, Demidov ON, Saito S, Onogi H et al. ING2 regulates the onset of replicative senescence by induction of p300-dependent p53 acetylation. Mol Cell Biol 2005; 25: 6639–6648.

    Article  CAS  Google Scholar 

  21. Menendez C, Abad M, Gomez-Cabello D, Moreno A, Palmero I . ING proteins in cellular senescence. Curr Drug Targets 2009; 10: 406–417.

    Article  CAS  Google Scholar 

  22. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW . Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 1997; 88: 593–602.

    Article  CAS  Google Scholar 

  23. Wong RP, Lin H, Khosravi S, Piche B, Jafarnejad SM, Chen DW et al. Tumour suppressor ING1b maintains genomic stability upon replication stress. Nucleic Acids Res 2011; 39: 3632–3642.

    Article  CAS  Google Scholar 

  24. Larrieu D, Ythier D, Binet R, Brambilla C, Brambilla E, Sengupta S et al. ING2 controls the progression of DNA replication forks to maintain genome stability. EMBO Rep 2009; 10: 1168–1174.

    Article  CAS  Google Scholar 

  25. Campisi J, d’Adda di Fagagna F . Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 2007; 8: 729–740.

    Article  CAS  Google Scholar 

  26. Chicas A, Wang X, Zhang C, McCurrach M, Zhao Z, Mert O et al. Dissecting the unique role of the retinoblastoma tumor suppressor during cellular senescence. Cancer Cell 2010; 17: 376–387.

    Article  CAS  Google Scholar 

  27. Nozell S, Laver T, Moseley D, Nowoslawski L, De Vos M, Atkinson GP et al. The ING4 tumor suppressor attenuates NF-kappaB activity at the promoters of target genes. Mol Cell Biol 2008; 28: 6632–6645.

    Article  CAS  Google Scholar 

  28. Erez N, Truitt M, Olson P, Arron ST, Hanahan D . Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell 2010; 17: 135–147.

    Article  CAS  Google Scholar 

  29. Lazennec G, Richmond A . Chemokines and chemokine receptors: new insights into cancer-related inflammation. Trends Mol Med 2010; 16: 133–144.

    Article  CAS  Google Scholar 

  30. Acosta JC, O’Loghlen A, Banito A, Guijarro MV, Augert A, Raguz S et al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 2008; 133: 1006–1018.

    Article  CAS  Google Scholar 

  31. Chien Y, Scuoppo C, Wang X, Fang X, Balgley B, Bolden JE et al. Control of the senescence-associated secretory phenotype by NF-kappaB promotes senescence and enhances chemosensitivity. Genes Dev 2011; 25: 2125–2136.

    Article  CAS  Google Scholar 

  32. Coppe JP, Patil CK, Rodier F, Sun Y, Munoz DP, Goldstein J et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 2008; 6: 2853–2868.

    Article  CAS  Google Scholar 

  33. Kuilman T, Michaloglou C, Vredeveld LC, Douma S, van Doorn R, Desmet CJ et al. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 2008; 133: 1019–1031.

    Article  CAS  Google Scholar 

  34. Kuilman T, Peeper DS . Senescence-messaging secretome: SMS-ing cellular stress. Nat Rev Cancer 2009; 9: 81–94.

    Article  CAS  Google Scholar 

  35. Coppe JP, Desprez PY, Krtolica A, Campisi J . The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 2010; 5: 99–118.

    Article  CAS  Google Scholar 

  36. Krtolica A, Parrinello S, Lockett S, Desprez PY, Campisi J . Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci USA 2001; 98: 12072–12077.

    Article  CAS  Google Scholar 

  37. Colla S, Tagliaferri S, Morandi F, Lunghi P, Donofrio G, Martorana D et al. The new tumor-suppressor gene inhibitor of growth family member 4 (ING4) regulates the production of proangiogenic molecules by myeloma cells and suppresses hypoxia-inducible factor-1 alpha (HIF-1alpha) activity: involvement in myeloma-induced angiogenesis. Blood 2007; 110: 4464–4475.

    Article  CAS  Google Scholar 

  38. Perkins ND . The diverse and complex roles of NF-kappaB subunits in cancer. Nat Rev Cancer 2012; 12: 121–132.

    Article  CAS  Google Scholar 

  39. Acosta JC, O’Loghlen A, Banito A, Raguz S, Gil J . Control of senescence by CXCR2 and its ligands. Cell Cycle 2008; 7: 2956–2959.

    Article  CAS  Google Scholar 

  40. Liu F, Wu S, Ren H, Gu J . Klotho suppresses RIG-I-mediated senescence-associated inflammation. Nat Cell Biol 2011; 13: 254–262.

    Article  CAS  Google Scholar 

  41. Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD et al. Genes that mediate breast cancer metastasis to lung. Nature 2005; 436: 518–524.

    Article  CAS  Google Scholar 

  42. Palmero I, Murga M, Zubiaga A, Serrano M . Activation of ARF by oncogenic stress in mouse fibroblasts is independent of E2F1 and E2F2. Oncogene 2002; 21: 2939–2947.

    Article  CAS  Google Scholar 

  43. Gomez-Cabello D, Callejas S, Benguria A, Moreno A, Alonso J, Palmero I . Regulation of the microRNA processor DGCR8 by the tumor suppressor ING1. Cancer Res 2010; 70: 1866–1874.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R Gomis, J Massague, G Peters, D Peeper and A Cano for providing cell lines and reagents, V Miguel for help in some experiments and I Peruzza for technical assistance. This work was supported by grants from the Spanish Ministry of Science and Innovation to IP (SAF2009-09031 and SAF2012-32117) and GM-B (SAF2010-20175), and from the Madrid Regional Government (S2010/BMD-2303) to GM-B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I Palmero.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreno, A., Soleto, I., García-Sanz, P. et al. ING4 regulates a secretory phenotype in primary fibroblasts with dual effects on cell proliferation and tumor growth. Oncogene 33, 1945–1953 (2014). https://doi.org/10.1038/onc.2013.145

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.145

Keywords

This article is cited by

Search

Quick links