Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The Rak/Frk tyrosine kinase associates with and internalizes the epidermal growth factor receptor

Abstract

Src is the founding member of a diverse family of intracellular tyrosine kinases, and Src has a key role in promoting cancer growth, in part, through its association with receptor tyrosine kinases. However, some Src-related proteins have widely divergent physiological roles, and these proteins include the Rak/Frk tyrosine kinase (Frk stands for Fyn-related kinase), which inhibits cancer cell growth and suppresses tumorigenesis. Rak/Frk phosphorylates and stabilizes the Pten tumor suppressor, protecting it from degradation, and Rak/Frk associates with the retinoblastoma (Rb) tumor suppressor. However, the role of Rak/Frk in receptor-mediated signaling is largely unknown. Here, we demonstrate that Rak/Frk associates with epidermal growth factor receptor (EGFR), increasing in activity and EGFR binding after EGF stimulation, when it decreases the pool of EGFR present at the plasma membrane. EGFR–Rak binding is direct, requires the SH2 and SH3 domains of Rak/Frk for efficient complex formation and is not dependent on the Grb2 adaptor protein. EGFR mutations are associated with increased EGFR activity and tumorigenicity, and we found that Rak/Frk associates preferentially with an EGFR exon 19 mutant, EGFRΔ747–749/A750P, compared with wild-type EGFR. Furthermore, Rak/Frk inhibited mutant EGFR phosphorylation at an activating site and dramatically decreased the levels of EGFRΔ747–749/A750P from the plasma membrane. Taken together, the results suggest that Rak/Frk inhibits EGFR signaling in cancer cells and has elevated activity against EGFR exon 19 mutants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Lemmon MA, Schlessinger J . Cell signaling by receptor tyrosine kinases. Cell 2010; 141: 1117–1134.

    Article  CAS  Google Scholar 

  2. Ganti AK . Epidermal growth factor receptor signaling in nonsmall cell lung cancer. Cancer Invest 2010; 28: 515–525.

    Article  CAS  Google Scholar 

  3. Sequist LV, Lynch TJ . EGFR tyrosine kinase inhibitors in lung cancer: an evolving story. Annu Rev Med 2008; 59: 429–442.

    Article  CAS  Google Scholar 

  4. Arteaga CL . ErbB-targeted therapeutic approaches in human cancer. Exp Cell Res 2003; 284: 122–130.

    Article  CAS  Google Scholar 

  5. Rivera F, Vega-Villegas ME, Lopez-Brea MF . Cetuximab, its clinical use and future perspectives. Anticancer Drugs 2008; 19: 99–113.

    Article  CAS  Google Scholar 

  6. Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 2004; 304: 1497–1500.

    Article  CAS  Google Scholar 

  7. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004; 350: 2129–2139.

    Article  CAS  Google Scholar 

  8. Gazdar AF . Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene 2009; 28 (Suppl 1): S24–S31.

    Article  CAS  Google Scholar 

  9. Sorkin A, Goh LK . Endocytosis and intracellular trafficking of ErbBs. Exp Cell Res 2008; 314: 3093–3106.

    Article  CAS  Google Scholar 

  10. Keilhack H, Tenev T, Nyakatura E, Godovac-Zimmermann J, Nielsen L, Seedorf K et al. Phosphotyrosine 1173 mediates binding of the protein-tyrosine phosphatase SHP-1 to the epidermal growth factor receptor and attenuation of receptor signaling. J Biol Chem 1998; 273: 24839–24846.

    Article  CAS  Google Scholar 

  11. Hsu JM, Chen CT, Chou CK, Kuo HP, Li LY, Lin CY et al. Crosstalk between Arg 1175 methylation and Tyr 1173 phosphorylation negatively modulates EGFR-mediated ERK activation. Nat Cell Biol 2011; 13: 174–181.

    Article  CAS  Google Scholar 

  12. Tanos B, Pendergast AM . Abl tyrosine kinase regulates endocytosis of the epidermal growth factor receptor. J Biol Chem 2006; 281: 32714–32723.

    Article  CAS  Google Scholar 

  13. Giubellino A, Burke TR, Bottaro DP . Grb2 signaling in cell motility and cancer. Expert Opin Ther Targets 2008; 12: 1021–1033.

    Article  CAS  Google Scholar 

  14. Lowenstein EJ, Daly RJ, Batzer AG, Li W, Margolis B, Lammers R et al. The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling. Cell 1992; 70: 431–442.

    Article  CAS  Google Scholar 

  15. Smithgall TE . SH2 and SH3 domains: potential targets for anti-cancer drug design. J Pharmacol Toxicol Methods 1995; 34: 125–132.

    Article  CAS  Google Scholar 

  16. Cance WG, Craven RJ, Weiner TM, Liu ET . Novel protein kinases expressed in human breast cancer. Int J Cancer 1993; 54: 571–577.

    Article  CAS  Google Scholar 

  17. Cance WG, Craven RJ, Bergman M, Xu L, Alitalo K, Liu ET . Rak, a novel nuclear tyrosine kinase expressed in epithelial cells. Cell Growth Differ 1994; 5: 1347–1355.

    CAS  PubMed  Google Scholar 

  18. Lee J, Wang Z, Luoh SM, Wood WI, Scadden DT . Cloning of FRK, a novel human intracellular SRC-like tyrosine kinase-encoding gene. Gene 1994; 138: 247–251.

    Article  CAS  Google Scholar 

  19. Serfas MS, Tyner AL . Brk, Srm, Frk, and Src42A form a distinct family of intracellular Src-like tyrosine kinases. Oncol Res 2003; 13: 409–419.

    Article  Google Scholar 

  20. Boggon TJ, Eck MJ . Structure and regulation of Src family kinases. Oncogene 2004; 23: 7918–7927.

    Article  CAS  Google Scholar 

  21. Craven RJ, Cance WG, Liu ET . The nuclear tyrosine kinase Rak associates with the retinoblastoma protein pRb. Cancer Res 1995; 55: 3969–3972.

    CAS  PubMed  Google Scholar 

  22. Meyer T, Xu L, Chang J, Liu ET, Craven RJ, Cance WG . Breast cancer cell line proliferation blocked by the Src-related Rak tyrosine kinase. Int J Cancer 2003; 104: 139–146.

    Article  CAS  Google Scholar 

  23. Yim EK, Peng G, Dai H, Hu R, Li K, Lu Y et al. Rak functions as a tumor suppressor by regulating PTEN protein stability and function. Cancer Cell 2009; 15: 304–314.

    Article  CAS  Google Scholar 

  24. Thuveson M, Albrecht D, Zurcher G, Andres AC, Ziemiecki A . iyk, a novel intracellular protein tyrosine kinase differentially expressed in the mouse mammary gland and intestine. Biochem Biophys Res Commun 1995; 209: 582–589.

    Article  CAS  Google Scholar 

  25. Berclaz G, Altermatt HJ, Rohrbach V, Dreher E, Ziemiecki A, Andres AC . Hormone-dependent nuclear localization of the tyrosine kinase iyk in the normal human breast epithelium and loss of expression during carcinogenesis. Int J Cancer 2000; 85: 889–894.

    Article  CAS  Google Scholar 

  26. Oberg-Welsh C, Anneren C, Welsh M . Mutation of C-terminal tyrosine residues Y497/Y504 of the Src-family member Bsk/Iyk decreases NIH3T3 cell proliferation. Growth Factors 1998; 16: 111–124.

    Article  CAS  Google Scholar 

  27. Chandrasekharan S, Qiu TH, Alkharouf N, Brantley K, Mitchell JB, Liu ET . Characterization of mice deficient in the Src family nonreceptor tyrosine kinase Frk/rak. Mol Cell Biol 2002; 22: 5235–5247.

    Article  CAS  Google Scholar 

  28. Georgescu MM . PTEN tumor suppressor network in PI3K-Akt pathway control. Genes Cancer 2010; 1: 1170–1177.

    Article  CAS  Google Scholar 

  29. Emlet DR, Moscatello DK, Ludlow LB, Wong AJ . Subsets of epidermal growth factor receptors during activation and endocytosis. J Biol Chem 1997; 272: 4079–4086.

    Article  CAS  Google Scholar 

  30. Katso RM, Pardo OE, Palamidessi A, Franz CM, Marinov M, De Laurentiis A et al. Phosphoinositide 3-kinase C2beta regulates cytoskeletal organization and cell migration via Rac-dependent mechanisms. Mol Biol Cell 2006; 17: 3729–3744.

    Article  CAS  Google Scholar 

  31. Jin G, Jeon HS, Yang E, Park JY . Mutation analysis of the FRK gene in non-small cell lung cancers. Lung Cancer 2011; 71: 115–117.

    Article  Google Scholar 

  32. Goeze A, Schluns K, Wolf G, Thasler Z, Petersen S, Petersen I . Chromosomal imbalances of primary and metastatic lung adenocarcinomas. J Pathol 2002; 196: 8–16.

    Article  Google Scholar 

  33. Brauer PM, Tyner AL . Building a better understanding of the intracellular tyrosine kinase PTK6—BRK by BRK. Biochim Biophys Acta 2010; 1806: 66–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Haegebarth A, Bie W, Yang R, Crawford SE, Vasioukhin V, Fuchs E et al. Protein tyrosine kinase 6 negatively regulates growth and promotes enterocyte differentiation in the small intestine. Mol Cell Biol 2006; 26: 4949–4957.

    Article  CAS  Google Scholar 

  35. Zheng Y, Asara JM, Tyner AL . Protein-tyrosine kinase 6 promotes peripheral adhesion complex formation and cell migration by phosphorylating p130 CRK-associated substrate. J Biol Chem 2012; 287: 148–158.

    Article  CAS  Google Scholar 

  36. Palka-Hamblin HL, Gierut JJ, Bie W, Brauer PM, Zheng Y, Asara JM et al. Identification of beta-catenin as a target of the intracellular tyrosine kinase PTK6. J Cell Sci 2010; 123 (Part 2): 236–245.

    Article  CAS  Google Scholar 

  37. Zheng Y, Peng M, Wang Z, Asara JM, Tyner AL . Protein tyrosine kinase 6 directly phosphorylates AKT and promotes AKT activation in response to epidermal growth factor. Mol Cell Biol 2010; 30: 4280–4292.

    Article  CAS  Google Scholar 

  38. Li X, Lu Y, Liang K, Hsu JM, Albarracin C, Mills GB et al. Brk/PTK6 sustains activated EGFR signaling through inhibiting EGFR degradation and transactivating EGFR. Oncogene 2012; 31: 4372–4383.

    Article  CAS  Google Scholar 

  39. Kuriyan J, Cowburn D . Modular peptide recognition domains in eukaryotic signaling. Annu Rev Biophys Biomol Struct 1997; 26: 259–288.

    Article  CAS  Google Scholar 

  40. Buday L, Downward J . Epidermal growth factor regulates p21ras through the formation of a complex of receptor, Grb2 adapter protein, and Sos nucleotide exchange factor. Cell 1993; 73: 611–620.

    Article  CAS  Google Scholar 

  41. Okutani T, Okabayashi Y, Kido Y, Sugimoto Y, Sakaguchi K, Matuoka K et al. Grb2/Ash binds directly to tyrosines 1068 and 1086 and indirectly to tyrosine 1148 of activated human epidermal growth factor receptors in intact cells. J Biol Chem 1994; 269: 31310–31314.

    CAS  PubMed  Google Scholar 

  42. Greulich H, Chen TH, Feng W, Janne PA, Alvarez JV, Zappaterra M et al. Oncogenic transformation by inhibitor-sensitive and -resistant EGFR mutants. PLoS Med 2005; 2: e313.

    Article  Google Scholar 

  43. Furukawa M, Nagatomo I, Kumagai T, Yamadori T, Takahashi R, Yoshimura M et al. Gefitinib-sensitive EGFR lacking residues 746–750 exhibits hypophosphorylation at tyrosine residue 1045, hypoubiquitination, and impaired endocytosis. DNA Cell Biol 2007; 26: 178–185.

    Article  CAS  Google Scholar 

  44. Padron D, Sato M, Shay JW, Gazdar AF, Minna JD, Roth MG . Epidermal growth factor receptors with tyrosine kinase domain mutations exhibit reduced Cbl association, poor ubiquitylation, and down-regulation but are efficiently internalized. Cancer Res 2007; 67: 7695–7702.

    Article  CAS  Google Scholar 

  45. Crudden G, Loesel R, Craven RJ . Overexpression of the cytochrome p450 activator hpr6 (heme-1 domain protein/human progesterone receptor) in tumors. Tumor Biol 2005; 26: 142–146.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Kentucky Lung Cancer Research Program, cycle 9. We thank Drs Gengxian Shi and Doug Andres for advice and reagents, Mary Gail Engle of the University of Kentucky Imaging Core Facility for expertise in microscopy and Woodrow Friend for reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R J Craven.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, L., Craven, R. The Rak/Frk tyrosine kinase associates with and internalizes the epidermal growth factor receptor. Oncogene 33, 326–335 (2014). https://doi.org/10.1038/onc.2012.589

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.589

Keywords

This article is cited by

Search

Quick links