Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

RelB inhibits cell proliferation and tumor growth through p53 transcriptional activation

Abstract

The alternative nuclear factor-kappaB (NF-κB) -activation pathway proceeds via inducible p100 processing, leading to the activation of RelB-containing dimers. This pathway is aberrantly activated in several types of tumors; however, a direct role for RelB in the control of cell proliferation is still largely unexplored. Here, we demonstrate that RelB provides cell proliferation-inhibitory signals in murine fibroblasts. In agreement with these results, RelB ectopic expression inhibits xenograft tumor growth in vivo, whereas RelB knockdown enhances it. Significantly, we show that RelB inhibits cell proliferation and tumor growth in a p53-dependent manner. Mechanistic studies indicate that RelB regulates the transcription of the p53 tumor-suppressor gene through direct recruitment to the p53 promoter, thus increasing both p53 protein levels and expression of p53 target genes such as p21. Our findings define a novel link between NF-κB and growth-inhibitory pathways involving the RelB-dependent transcriptional upregulation of p53. Furthermore, they suggest that inhibition of RelB in some tumor types that retain wild-type p53 may diminish rather than improve therapeutic responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Oeckinghaus A, Ghosh S . The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol 2009; 1: a000034.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hayden MS, Ghosh S . Shared principles in NF-kappaB signaling. Cell 2008; 132: 344–362.

    Article  CAS  PubMed  Google Scholar 

  3. Karin M, Lin A . NF-kappaB at the crossroads of life and death. Nat Immunol 2002; 3: 221–227.

    Article  CAS  PubMed  Google Scholar 

  4. Fan Y, Dutta J, Gupta N, Fan G, Gelinas C . Regulation of programmed cell death by NF-kappaB and its role in tumorigenesis and therapy. Adv Exp Med Biol 2008; 615: 223–250.

    Article  CAS  PubMed  Google Scholar 

  5. Naugler WE, Karin M . NF-kappaB and cancer-identifying targets and mechanisms. Curr Opin Genet Dev 2008; 18: 19–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Basseres DS, Baldwin AS . Nuclear factor-kappaB and inhibitor of kappaB kinase pathways in oncogenic initiation and progression. Oncogene 2006; 25: 6817–6830.

    Article  CAS  PubMed  Google Scholar 

  7. Baud V, Karin M . Is NF-kappaB a good target for cancer therapy? Hopes and pitfalls. Nat Rev Drug Discov 2009; 8: 33–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen F, Castranova V . Nuclear factor-kappaB, an unappreciated tumor suppressor. Cancer Res 2007; 67: 11093–11098.

    Article  CAS  PubMed  Google Scholar 

  9. Perkins ND . NF-kappaB: tumor promoter or suppressor? Trends Cell Biol 2004; 14: 64–69.

    Article  CAS  PubMed  Google Scholar 

  10. Dajee M, Lazarov M, Zhang JY, Cai T, Green CL, Russell AJ et al. NF-kappaB blockade and oncogenic Ras trigger invasive human epidermal neoplasia. Nature 2003; 421: 639–643.

    Article  CAS  PubMed  Google Scholar 

  11. Chen F, Lu Y, Castranova V, Li Z, Karin M . Loss of Ikkbeta promotes migration and proliferation of mouse embryo fibroblast cells. J Biol Chem 2006; 281: 37142–37149.

    Article  CAS  PubMed  Google Scholar 

  12. Maeda S, Kamata H, Luo JL, Leffert H, Karin M . IKKbeta couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 2005; 121: 977–990.

    Article  CAS  PubMed  Google Scholar 

  13. Gapuzan ME, Yufit PV, Gilmore TD . Immortalized embryonic mouse fibroblasts lacking the RelA subunit of transcription factor NF-kappaB have a malignantly transformed phenotype. Oncogene 2002; 21: 2484–2492.

    Article  CAS  PubMed  Google Scholar 

  14. Saccani S, Pantano S, Natoli G . Modulation of NF-kappaB activity by exchange of dimers. Mol Cell 2003; 11: 1563–1574.

    Article  CAS  PubMed  Google Scholar 

  15. Perkins ND . Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol 2007; 8: 49–62.

    Article  CAS  PubMed  Google Scholar 

  16. Ak P, Levine AJ . p53 and NF-kappaB: different strategies for responding to stress lead to a functional antagonism. FASEB J. 2010; 24: 3643–3652.

    Article  CAS  PubMed  Google Scholar 

  17. Ryan KM, Ernst MK, Rice NR, Vousden KH . Role of NF-kappaB in p53-mediated programmed cell death. Nature 2000; 404: 892–897.

    Article  CAS  PubMed  Google Scholar 

  18. Wu L, D'Amico A, Winkel KD, Suter M, Lo D, Shortman K . RelB is essential for the development of myeloid-related CD8alpha- dendritic cells but not of lymphoid-related CD8alpha+ dendritic cells. Immunity 1998; 9: 839–847.

    Article  CAS  PubMed  Google Scholar 

  19. Weih F, Carrasco D, Durham SK, Barton DS, Rizzo CA, Ryseck RP et al. Multiorgan inflammation and hematopoietic abnormalities in mice with a targeted disruption of RelB, a member of the NF-kappa B/Rel family. Cell 1995; 80: 331–340.

    Article  CAS  PubMed  Google Scholar 

  20. Annunziata CM, Davis RE, Demchenko Y, Bellamy W, Gabrea A, Zhan F et al. Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 2007; 12: 115–130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Keats JJ, Fonseca R, Chesi M, Schop R, Baker A, Chng WJ et al. Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell 2007; 12: 131–144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang X, Belguise K, Kersual N, Kirsch KH, Mineva ND, Galtier F et al. Oestrogen signalling inhibits invasive phenotype by repressing RelB and its target BCL2. Nat Cell Biol 2007; 9: 470–478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xu Y, Josson S, Fang F, Oberley TD, Clair DK, Wan XS et al. RelB enhances prostate cancer growth: implications for the role of the nuclear factor-kappaB alternative pathway in tumorigenicity. Cancer Res 2009; 69: 3267–3271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vousden KH, Prives C . Blinded by the light: the growing complexity of p53. Cell 2009; 137: 413–431.

    Article  CAS  PubMed  Google Scholar 

  25. Levine AJ, Oren M . The first 30 years of p53: growing ever more complex. Nat Rev Cancer 2009; 9: 749–758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tergaonkar V, Pando M, Vafa O, Wahl G, Verma I . p53 stabilization is decreased upon NFkappaB activation: a role for NFkappaB in acquisition of resistance to chemotherapy. Cancer Cell 2002; 1: 493–503.

    Article  CAS  PubMed  Google Scholar 

  27. Xia Y, Padre RC, De Mendoza TH, Bottero V, Tergaonkar VB, Verma IM . Phosphorylation of p53 by IkappaB kinase 2 promotes its degradation by beta-TrCP. Proc Natl Acad Sci USA 2009; 106: 2629–2634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jacque E, Tchenio T, Piton G, Romeo PH, Baud V . RelA repression of RelB activity induces selective gene activation downstream of TNF receptors. Proc Natl Acad Sci USA 2005; 102: 14635–14640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dejardin E . The alternative NF-kappaB pathway from biochemistry to biology: pitfalls and promises for future drug development. Biochem Pharmacol 2006; 72: 1161–1179.

    Article  CAS  PubMed  Google Scholar 

  30. Mise N, Drosten M, Racek T, Tannapfel A, Putzer BM . Evaluation of potential mechanisms underlying genotype-phenotype correlations in multiple endocrine neoplasia type 2. Oncogene 2006; 25: 6637–6647.

    Article  CAS  PubMed  Google Scholar 

  31. Espinosa JM, Verdun RE, Emerson BM . p53 functions through stress- and promoter-specific recruitment of transcription initiation components before and after DNA damage. Mol Cell 2003; 12: 1015–1027.

    Article  CAS  PubMed  Google Scholar 

  32. An W, Kim J, Roeder RG . Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53. Cell 2004; 117: 735–748.

    Article  CAS  PubMed  Google Scholar 

  33. Roy B, Reisman D . Positive and negative regulatory elements in the murine p53 promoter. Oncogene 1996; 13: 2359–2366.

    CAS  PubMed  Google Scholar 

  34. Hellin AC, Calmant P, Gielen J, Bours V, Merville MP . Nuclear factor - kappaB-dependent regulation of p53 gene expression induced by daunomycin genotoxic drug. Oncogene 1998; 16: 1187–1195.

    Article  CAS  PubMed  Google Scholar 

  35. Mauro C, Leow SC, Anso E, Rocha S, Thotakura AK, Tornatore L et al. NF-kappaB controls energy homeostasis and metabolic adaptation by upregulating mitochondrial respiration. Nat Cell Biol 2011; 13: 1272–1279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Huang WC, Ju TK, Hung MC, Chen CC . Phosphorylation of CBP by IKKalpha promotes cell growth by switching the binding preference of CBP from p53 to NF-kappaB. Mol Cell 2007; 26: 75–87.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Schumm K, Rocha S, Caamano J, Perkins ND . Regulation of p53 tumour suppressor target gene expression by the p52 NF-kappaB subunit. EMBO J. 2006; 25: 4820–4832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Barre B, Perkins ND . The Skp2 promoter integrates signaling through the NF-kappaB, p53, and Akt/GSK3beta pathways to regulate autophagy and apoptosis. Mol Cell 2010; 38: 524–538.

    Article  CAS  PubMed  Google Scholar 

  39. Hailfinger S, Nogai H, Pelzer C, Jaworski M, Cabalzar K, Charton JE et al. Malt1-dependent RelB cleavage promotes canonical NF-kappaB activation in lymphocytes and lymphoma cell lines. Proc Natl Acad Sci USA 2011; 108: 14596–14601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang JY, Green CL, Tao S, Khavari PA . NF-kappaB RelA opposes epidermal proliferation driven by TNFR1 and JNK. Genes Dev 2004; 18: 17–22.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hu Y, Baud V, Oga T, Kim KI, Yoshida K, Karin M . IKKalpha controls formation of the epidermis independently of NF-kappaB. Nature 2001; 410: 710–714.

    Article  CAS  PubMed  Google Scholar 

  42. Park E, Zhu F, Liu B, Xia X, Shen J, Bustos T et al. Reduction in IkappaB kinase alpha expression promotes the development of skin papillomas and carcinomas. Cancer Res 2007; 67: 9158–9168.

    Article  CAS  PubMed  Google Scholar 

  43. Liu B, Park E, Zhu F, Bustos T, Liu J, Shen J et al. A critical role for I kappaB kinase alpha in the development of human and mouse squamous cell carcinomas. Proc Natl Acad Sci USA 2006; 103: 17202–17207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Maeda G, Chiba T, Kawashiri S, Satoh T, Imai K . Epigenetic inactivation of IkappaB Kinase-alpha in oral carcinomas and tumor progression. Clin Cancer Res 2007; 13: 5041–5047.

    Article  CAS  PubMed  Google Scholar 

  45. Kieusseian A, Chagraoui J, Kerdudo C, Mangeot PE, Gage PJ, Navarro N et al. Expression of Pitx2 in stromal cells is required for normal hematopoiesis. Blood 2006; 107: 492–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank F Weih, U Siebenlist, K Vousden, B Vogelstein, T Jacks, J Cleveland, M Oren, D Reisman, G Kroemer, JL Perfettini, M Körner, LA Martinez, T Tchenio, J Browning and I Verma for valuable material; G Piton for technical assistance; N Boggetto for cell sorting (ImagoSeine, Institut Monod, France, Région Ile-de-France grant no. E539); and LL Pritchard for critically reading the manuscript. This work was supported by grants to VB from Agence Nationale pour la Recherche (ANR), Association pour la Recherche sur le Cancer, Belgian InterUniversity Attraction Pole, Cancéropole Ile-de-France and Université Paris Descartes, post-doctoral funding from ANR (HA and KB), doctoral fellowships from Ministère de la Recherche et des Technologies, Ligue Nationale contre le Cancer, and Société Française du Cancer (EJ), and an award from the Bettencourt-Schueller Fundation (EJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V Baud.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website .

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacque, E., Billot, K., Authier, H. et al. RelB inhibits cell proliferation and tumor growth through p53 transcriptional activation. Oncogene 32, 2661–2669 (2013). https://doi.org/10.1038/onc.2012.282

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.282

Keywords

This article is cited by

Search

Quick links