Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Loss of PTEN induces microtentacles through PI3K-independent activation of cofilin

Abstract

Loss of PTEN tumor suppressor enhances metastatic risk in breast cancer, although the underlying mechanisms are poorly defined. We report that homozygous deletion of PTEN in mammary epithelial cells induces tubulin-based microtentacles (McTNs) that facilitate cell reattachment and homotypic aggregation. Treatment with contractility-modulating drugs showed that McTNs in PTEN−/− cells are suppressible by controlling the actin cytoskeleton. Because outward microtubule extension is counteracted by actin cortical contraction, increased activity of actin-severing proteins could release constraints on McTN formation in PTEN−/− cells. One such actin-severing protein, cofilin, is activated in detached PTEN−/− cells that could weaken the actin cortex to promote McTNs. Expression of wild-type cofilin, an activated mutant (S3A), and an inactive mutant (S3E) demonstrated that altering cofilin phosphorylation directly affects McTNs formation. Chemical inhibition of PI3K did not reduce McTNs or inactivate cofilin in PTEN−/− cells. Additionally, knock-in expression of the two most common PI3K-activating mutations observed in human cancer patients did not increase McTNs or activate cofilin. PTEN loss and PI3K activation also caused differential activation of the cofilin regulators, LIM-kinase1 (LIMK) and Slingshot-1L (SSH). Furthermore, McTNs were suppressed and cofilin was inactivated by restoration of PTEN in the PTEN−/− cells, indicating that both the elevation of McTNs and the activation of cofilin are specific results arising from PTEN loss. These data identify a novel mechanism by which PTEN loss could remodel the cortical actin network to facilitate McTNs that promote tumor cell reattachment and aggregation. Using isogenic MCF-10A PTEN−/− and PIK3CA mutants, we have further demonstrated that there are clear differences in activation of cofilin, LIMK and SSH between PTEN loss and PI3K activation, providing a new evidence that these mutations yield distinct cytoskeletal phenotypes, which could have an impact on tumor biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Mehlen P, Puisieux A . Metastasis: a question of life or death. Nat Rev Cancer 2006; 6: 449–458.

    Article  CAS  PubMed  Google Scholar 

  2. Naumov GN, MacDonald IC, Weinmeister PM, Kerkvliet N, Nadkarni KV, Wilson SM et al. Persistence of solitary mammary carcinoma cells in a secondary site: a possible contributor to dormancy. Cancer Res 2002; 62: 2162–2168.

    CAS  PubMed  Google Scholar 

  3. Schmidt-Kittler O, Ragg T, Daskalakis A, Granzow M, Ahr A, Blankenstein TJ et al. From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proc Natl Acad Sci USA 2003; 100: 7737–7742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chambers AF, Groom AC, MacDonald IC . Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2002; 2: 563–572.

    Article  CAS  PubMed  Google Scholar 

  5. Yamaguchi H, Wyckoff J, Condeelis J . Cell migration in tumors. Curr Opin Cell Biol 2005; 17: 559–564.

    Article  CAS  PubMed  Google Scholar 

  6. Martin SS, Vuori K . Regulation of Bcl-2 proteins during anoikis and amorphosis. Biochim Biophys Acta 2004; 1692: 145–157.

    Article  CAS  PubMed  Google Scholar 

  7. Whipple RA, Cheung AM, Martin SS . Detyrosinated microtubule protrusions in suspended mammary epithelial cells promote reattachment. Exp Cell Res 2007; 313: 1326–1336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Aguirre-Ghiso JA . Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 2007; 7: 834–846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Asch HL, Head K, Dong Y, Natoli F, Winston JS, Connolly JL et al. Widespread loss of gelsolin in breast cancers of humans, mice, and rats. Cancer Res 1996; 56: 4841–4845.

    CAS  PubMed  Google Scholar 

  10. Guck J, Schinkinger S, Lincoln B, Wottawah F, Ebert S, Romeyke M et al. Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys J 2005; 88: 3689–3698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu CR, Ma CS, Ning JY, You JF, Liao SL, Zheng J . Differential thymosin beta 10 expression levels and actin filament organization in tumor cell lines with different metastatic potential. Chin Med J (Engl) 2004; 117: 213–218.

    CAS  Google Scholar 

  12. Zschiesche W, Schonborn I, Behrens J, Herrenknecht K, Hartveit F, Lilleng P et al. Expression of E-cadherin and catenins in invasive mammary carcinomas. Anticancer Res 1997; 17: 561–567.

    CAS  PubMed  Google Scholar 

  13. Weiss L . Biomechanical interactions of cancer cells with the microvasculature during hematogenous metastasis. Cancer Metastasis Rev 1992; 11: 227–235.

    Article  CAS  PubMed  Google Scholar 

  14. Vitolo MI, Weiss MB, Szmacinski M, Tahir K, Waldman T, Park BH et al. Deletion of PTEN promotes tumorigenic signaling, resistance to anoikis, and altered response to chemotherapeutic agents in human mammary epithelial cells. Cancer Res 2009; 69: 8275–8283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Clark J, Anderson KE, Juvin V, Smith TS, Karpe F, Wakelam MJ et al. Quantification of PtdInsP3 molecular species in cells and tissues by mass spectrometry. Nat Methods 2011; 8: 267–272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gilmore AP, Burridge K . Regulation of vinculin binding to talin and actin by phosphatidyl-inositol-4-5-bisphosphate. Nature 1996; 381: 531–535.

    Article  CAS  PubMed  Google Scholar 

  17. Yamamoto M, Hilgemann DH, Feng S, Bito H, Ishihara H, Shibasaki Y et al. Phosphatidylinositol 4,5-bisphosphate induces actin stress-fiber formation and inhibits membrane ruffling in CV1 cells. J Cell Biol 2001; 152: 867–876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fraley TS, Pereira CB, Tran TC, Singleton C, Greenwood JA . Phosphoinositide binding regulates alpha-actinin dynamics: mechanism for modulating cytoskeletal remodeling. J Biol Chem 2005; 280: 15479–15482.

    Article  CAS  PubMed  Google Scholar 

  19. Di Paolo G, De Camilli P . Phosphoinositides in cell regulation and membrane dynamics. Nature 2006; 443: 651–657.

    Article  CAS  PubMed  Google Scholar 

  20. Janmey PA, Lindberg U . Cytoskeletal regulation: rich in lipids. Nat Rev Mol Cell Biol 2004; 5: 658–666.

    Article  CAS  PubMed  Google Scholar 

  21. Kusano K, Abe H, Obinata T . Detection of a sequence involved in actin-binding and phosphoinositide-binding in the N-terminal side of cofilin. Mol Cell Biochem 1999; 190: 133–141.

    Article  CAS  PubMed  Google Scholar 

  22. Yonezawa N, Nishida E, Iida K, Yahara I, Sakai H . Inhibition of the interactions of cofilin, destrin, and deoxyribonuclease I with actin by phosphoinositides. J Biol Chem 1990; 265: 8382–8386.

    CAS  PubMed  Google Scholar 

  23. Whipple RA, Balzer EM, Cho EH, Matrone MA, Yoon JR, Martin SS . Vimentin filaments support extension of tubulin-based microtentacles in detached breast tumor cells. Cancer Res 2008; 68: 5678–5688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Glinsky VV, Glinsky GV, Glinskii OV, Huxley VH, Turk JR, Mossine VV et al. Intravascular metastatic cancer cell homotypic aggregation at the sites of primary attachment to the endothelium. Cancer Res 2003; 63: 3805–3811.

    CAS  PubMed  Google Scholar 

  25. Matrone MA, Whipple RA, Balzer EM, Martin SS . Microtentacles tip the balance of cytoskeletal forces in circulating tumor cells. Cancer Res 2010; 70: 7737–7741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Balzer EM, Whipple RA, Cho EH, Matrone MA, Martin SS . Antimitotic chemotherapeutics promote adhesive responses in detached and circulating tumor cells. Breast Cancer Res Treat 2010; 121: 65–78.

    Article  PubMed  Google Scholar 

  27. Matrone MA, Whipple RA, Thompson K, Cho EH, Vitolo MI, Balzer EM et al. Metastatic breast tumors express increased tau, which promotes microtentacle formation and the reattachment of detached breast tumor cells. Oncogene 2010; 29: 3217–3227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vicente-Manzanares M, Ma X, Adelstein RS, Horwitz AR . Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol 2009; 10: 778–790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hale CM, Sun SX, Wirtz D . Resolving the role of actoymyosin contractility in cell microrheology. PLoS One 2009; 4: e7054.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Even-Ram S, Doyle AD, Conti MA, Matsumoto K, Adelstein RS, Yamada KM . Myosin IIA regulates cell motility and actomyosin-microtubule crosstalk. Nat Cell Biol 2007; 9: 299–309.

    Article  CAS  PubMed  Google Scholar 

  31. Tohtong R, Phattarasakul K, Jiraviriyakul A, Sutthiphongchai T . Dependence of metastatic cancer cell invasion on MLCK-catalyzed phosphorylation of myosin regulatory light chain. Prostate Cancer Prostatic Dis 2003; 6: 212–216.

    Article  CAS  PubMed  Google Scholar 

  32. Betapudi V, Licate LS, Egelhoff TT . Distinct roles of nonmuscle myosin II isoforms in the regulation of MDA-MB-231 breast cancer cell spreading and migration. Cancer Res 2006; 66: 4725–4733.

    Article  CAS  PubMed  Google Scholar 

  33. Shin DH, Chun YS, Lee KH, Shin HW, Park JW . Arrest defective-1 controls tumor cell behavior by acetylating myosin light chain kinase. PLoS One 2009; 4: e7451.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Doreian BW, Fulop TG, Meklemburg RL, Smith CB . Cortical F-actin, the exocytic mode, and neuropeptide release in mouse chromaffin cells is regulated by myristoylated alanine-rich C-kinase substrate and myosin II. Mol Biol Cell 2009; 20: 3142–3154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Okagaki T, Hayakawa K, Samizo K, Kohama K . Inhibition of the ATP-dependent interaction of actin and myosin by the catalytic domain of the myosin light chain kinase of smooth muscle: possible involvement in smooth muscle relaxation. J Biochem 1999; 125: 619–626.

    Article  CAS  PubMed  Google Scholar 

  36. Ghosh M, Song X, Mouneimne G, Sidani M, Lawrence DS, Condeelis JS . Cofilin promotes actin polymerization and defines the direction of cell motility. Science 2004; 304: 743–746.

    Article  CAS  PubMed  Google Scholar 

  37. Gustin JP, Karakas B, Weiss MB, Abukhdeir AM, Lauring J, Garay JP et al. Knockin of mutant PIK3CA activates multiple oncogenic pathways. Proc Natl Acad Sci USA 2009; 106: 2835–2840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ohashi K, Nagata K, Maekawa M, Ishizaki T, Narumiya S, Mizuno K . Rho-associated kinase ROCK activates LIM-kinase 1 by phosphorylation at threonine 508 within the activation loop. J Biol Chem 2000; 275: 3577–3582.

    Article  CAS  PubMed  Google Scholar 

  39. Edwards DC, Sanders LC, Bokoch GM, Gill GN . Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat Cell Biol 1999; 1: 253–259.

    Article  CAS  PubMed  Google Scholar 

  40. Maekawa M, Ishizaki T, Boku S, Watanabe N, Fujita A, Iwamatsu A et al. Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 1999; 285: 895–898.

    Article  CAS  PubMed  Google Scholar 

  41. Eiseler T, Doppler H, Yan IK, Kitatani K, Mizuno K, Storz P . Protein kinase D1 regulates cofilin-mediated F-actin reorganization and cell motility through slingshot. Nat Cell Biol 2009; 11: 545–556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nagata-Ohashi K, Ohta Y, Goto K, Chiba S, Mori R, Nishita M et al. A pathway of neuregulin-induced activation of cofilin-phosphatase Slingshot and cofilin in lamellipodia. J Cell Biol 2004; 165: 465–471.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Nishita M, Wang Y, Tomizawa C, Suzuki A, Niwa R, Uemura T et al. Phosphoinositide 3-kinase-mediated activation of cofilin phosphatase Slingshot and its role for insulin-induced membrane protrusion. J Biol Chem 2004; 279: 7193–7198.

    Article  CAS  PubMed  Google Scholar 

  44. Ingber DE, Tensegrity I . Cell structure and hierarchical systems biology. J Cell Sci 2003; 116: 1157–1173.

    Article  CAS  PubMed  Google Scholar 

  45. Wiggan O, Shaw AE, DeLuca JG, Bamburg JR . ADF/cofilin regulates actomyosin assembly through competitive inhibition of myosin II binding to F-actin. Dev Cell 2012; 22: 530–543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Huang TY, DerMardirossian C, Bokoch GM . Cofilin phosphatases and regulation of actin dynamics. Curr Opin Cell Biol 2006; 18: 26–31.

    Article  CAS  PubMed  Google Scholar 

  47. Kobayashi M, Nishita M, Mishima T, Ohashi K, Mizuno K . MAPKAPK-2-mediated LIM-kinase activation is critical for VEGF-induced actin remodeling and cell migration. EMBO J 2006; 25: 713–726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Myers MP, Stolarov JP, Eng C, Li J, Wang SI, Wigler MH et al. P-TEN, the tumor suppressor from human chromosome 10q23, is a dual-specificity phosphatase. Proc Natl Acad Sci USA 1997; 94: 9052–9057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Denu JM, Stuckey JA, Saper MA, Dixon JE . Form and function in protein dephosphorylation. Cell 1996; 87: 361–364.

    Article  CAS  PubMed  Google Scholar 

  50. Craven SE, Bredt DS . PDZ proteins organize synaptic signaling pathways. Cell 1998; 93: 495–498.

    Article  CAS  PubMed  Google Scholar 

  51. Cantley LC, Neel BG . New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci USA 1999; 96: 4240–4245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Saal LH, Johansson P, Holm K, Gruvberger-Saal SK, She QB, Maurer M et al. Poor prognosis in carcinoma is associated with a gene expression signature of aberrant PTEN tumor suppressor pathway activity. Proc Natl Acad Sci USA 2007; 104: 7564–7569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Stemke-Hale K, Gonzalez-Angulo AM, Lluch A, Neve RM, Kuo WL, Davies M et al. An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res 2008; 68: 6084–6091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Perez-Tenorio G, Alkhori L, Olsson B, Waltersson MA, Nordenskjold B, Rutqvist LE et al. PIK3CA mutations and PTEN loss correlate with similar prognostic factors and are not mutually exclusive in breast cancer. Clin Cancer Res 2007; 13: 3577–3584.

    Article  CAS  PubMed  Google Scholar 

  55. Janssen EA, Soiland H, Skaland I, Gudlaugson E, Kjellevold KH, Nysted A et al. Comparing the prognostic value of PTEN and Akt expression with the Mitotic Activity Index in adjuvant chemotherapy-treated node-negative breast cancer patients aged <55 years. Cell Oncol 2007; 29: 25–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Saal LH, Gruvberger-Saal SK, Persson C, Lovgren K, Jumppanen M, Staaf J et al. Recurrent gross mutations of the PTEN tumor suppressor gene in breast cancers with deficient DSB repair. Nat Genet 2008; 40: 102–107.

    Article  CAS  PubMed  Google Scholar 

  57. Korb T, Schluter K, Enns A, Spiegel HU, Senninger N, Nicolson GL et al. Integrity of actin fibers and microtubules influences metastatic tumor cell adhesion. Exp Cell Res 2004; 299: 236–247.

    Article  CAS  PubMed  Google Scholar 

  58. Hsieh SH, Ferraro GB, Fournier AE . Myelin-associated inhibitors regulate cofilin phosphorylation and neuronal inhibition through LIM kinase and Slingshot phosphatase. J Neurosci 2006; 26: 1006–1015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Ruth L Kirschstein-National Service Research Award, T32-HL07698 (MIV), National Cancer Institute, R01-CA124704 (SSM), Susan G Komen Foundation, KG100240 (SSM) and an Era of Hope Scholar award from the Department of Defense, BC100675 (SSM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S S Martin.

Ethics declarations

Competing interests

The PTEN−/− cells are licensed by Horizon Discovery Ltd. (Cambridge, UK). Dr Vitolo receives compensation from the sale of these cells. The remaining authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vitolo, M., Boggs, A., Whipple, R. et al. Loss of PTEN induces microtentacles through PI3K-independent activation of cofilin. Oncogene 32, 2200–2210 (2013). https://doi.org/10.1038/onc.2012.234

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.234

Keywords

This article is cited by

Search

Quick links