Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cyclin E drives human keratinocyte growth into differentiation

Abstract

Human epidermis is continuously exposed to environmental mutagenic hazard and is the most frequent target of human cancer. How the epidermis coordinates proliferation with differentiation to maintain homeostasis, even in hyperproliferative conditions, is unclear. For instance, overactivation of the proto-oncogene MYC in keratinocytes stimulates differentiation. Here we explore the cell cycle regulation as proliferating human keratinocytes commit to terminal differentiation upon loss of anchorage or overactivation of MYC. The S-phase of the cell cycle is deregulated as mitotic regulators are inhibited in the onset of differentiation. Experimental inhibition of mitotic kinase cdk1 or kinases of the mitosis spindle checkpoint Aurora B or Polo-like Kinase, triggered keratinocyte terminal differentiation. Furthermore, hyperactivation of the cell cycle by overexpressing the DNA replication regulator Cyclin E induced mitosis failure and differentiation. Inhibition of Cyclin E by shRNAs attenuated the induction of differentiation by MYC. In addition, we present evidence that Cyclin E induces DNA damage and the p53 pathway. The results provide novel clues for the mechanisms committing proliferative keratinocytes to differentiate, with implications for tissue homeostasis maintenance, HPV amplification and tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Watt FM, Lo Celso C, Silva-Vargas V . Epidermal stem cells: an update. Curr Opin Genet Dev 2006; 16: 518–524.

    Article  CAS  Google Scholar 

  2. Fuchs E, Horsley V . More than one way to skin. Genes Dev 2008; 22: 976–985.

    Article  CAS  Google Scholar 

  3. Banks-Schlegel S, Green H . Involucrin synthesis and tissue assembly by keratinocytes in natural and cultured human epithelia. J Cell Biol 1981; 90: 732–737.

    Article  CAS  Google Scholar 

  4. Watt FM, Green H . Involucrin synthesis is correlated with cell size in human epidermal cultures. J Cell Biol 1981; 90: 738–742.

    Article  CAS  Google Scholar 

  5. Adams JC, Watt FM . Fibronectin inhibits the terminal differentiation of human keratinocytes. Nature 1989; 340: 307–309.

    Article  CAS  Google Scholar 

  6. Eilers M, Eisenman RN . Myc's broad reach. Genes Dev 2008; 22: 2755–2766.

    Article  CAS  Google Scholar 

  7. Gandarillas A, Watt FM . c-Myc promotes differentiation of human epidermal stem cells. Genes Dev 1997; 11: 2869–2882.

    Article  CAS  Google Scholar 

  8. Watt FM, Frye M, Benitah SA . MYC in mammalian epidermis: how can an oncogene stimulate differentiation? Nat Rev Cancer 2008; 8: 234–242.

    Article  CAS  Google Scholar 

  9. Gandarillas A, Davies D, Blanchard JM . Normal and c-Myc-promoted human keratinocyte differentiation both occur via a novel cell cycle involving cellular growth and endoreplication. Oncogene 2000; 19: 3278–3289.

    Article  CAS  Google Scholar 

  10. Zanet J, Pibre S, Jacquet C, Ramirez A, de Alboran IM, Gandarillas A . Endogenous Myc controls mammalian epidermal cell size, hyperproliferation, endoreplication and stem cell amplification. J Cell Sci 2005; 118 (Part 8): 1693–1704.

    Article  CAS  Google Scholar 

  11. Zanet J, Freije A, Ruiz M, Coulon V, Sanz JR, Chiesa J et al. A mitosis block links active cell cycle with human epidermal differentiation and results in endoreplication. PLoS One 2010; 5: e15701.

    Article  CAS  Google Scholar 

  12. Murray AW . Recycling the cell cycle: cyclins revisited. Cell 2004; 116: 221–234.

    Article  CAS  Google Scholar 

  13. Watt FM . Role of integrins in regulating epidermal adhesion, growth and differentiation. EMBO J 2002; 21: 3919–3926.

    Article  CAS  Google Scholar 

  14. Jones PH, Watt FM . Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell 1993; 73: 713–724.

    Article  CAS  Google Scholar 

  15. Guadagno TM, Ohtsubo M, Roberts JM, Assoian RK . A link between cyclin A expression and adhesion-dependent cell cycle progression. Science 1993; 262: 1572–1575.

    Article  CAS  Google Scholar 

  16. Harvat BL, Wang A, Seth P, Jetten AM . Up-regulation of p27Kip1, p21WAF1/Cip1 and p16Ink4a is associated with, but not sufficient for, induction of squamous differentiation. J Cell Sci 1998; 111 (Part 9): 1185–1196.

    CAS  PubMed  Google Scholar 

  17. Hauser P, Ma L, Agrawal D, Haura E, Cress WD, Pledger WJ . Efficient down-regulation of cyclin A-associated activity and expression in suspended primary keratinocytes requires p21(Cip1). Mol Cancer Res 2004; 2: 96–104.

    CAS  PubMed  Google Scholar 

  18. Paramio JM, Lain S, Segrelles C, Lane EB, Jorcano JL . Differential expression and functionally co-operative roles for the retinoblastoma family of proteins in epidermal differentiation. Oncogene 1998; 17: 949–957.

    Article  CAS  Google Scholar 

  19. Gandarillas A, Watt FM . Changes in expression of members of the fos and jun families and myc network during terminal differentiation of human keratinocytes. Oncogene 1995; 11: 1403–1407.

    CAS  PubMed  Google Scholar 

  20. Hurlin PJ, Foley KP, Ayer DE, Eisenman RN, Hanahan D, Arbeit JM . Regulation of Myc and Mad during epidermal differentiation and HPV-associated tumorigenesis. Oncogene 1995; 11: 2487–2501.

    CAS  PubMed  Google Scholar 

  21. Jansen-Durr P, Meichle A, Steiner P, Pagano M, Finke K, Botz J et al. Differential modulation of cyclin gene expression by MYC. Proc Natl Acad Sci USA 1993; 90: 3685–3689.

    Article  CAS  Google Scholar 

  22. Hanson KD, Shichiri M, Follansbee MR, Sedivy JM . Effects of c-myc expression on cell cycle progression. Mol Cell Biol 1994; 14: 5748–5755.

    Article  CAS  Google Scholar 

  23. Dotto GP . p21(WAF1/Cip1): more than a break to the cell cycle? Biochim Biophys Acta 2000; 1471: M43–M56.

    CAS  Google Scholar 

  24. Knockaert M, Greengard P, Meijer L . Pharmacological inhibitors of cyclin-dependent kinases. Trends Pharmacol Sci 2002; 23: 417–425.

    Article  CAS  Google Scholar 

  25. Kleinberger-Doron N, Shelah N, Capone R, Gazit A, Levitzki A . Inhibition of Cdk2 activation by selected tyrphostins causes cell cycle arrest at late G1 and S phase. Exp Cell Res 1998; 241: 340–351.

    Article  CAS  Google Scholar 

  26. Ben-Bassat H, Rosenbaum-Mitrani S, Hartzstark Z, Levitzki R, Chaouat M, Shlomai Z et al. Tyrphostins that suppress the growth of human papilloma virus 16-immortalized human keratinocytes. J Pharmacol Exp Ther 1999; 290: 1442–1457.

    CAS  PubMed  Google Scholar 

  27. Planchais S, Glab N, Trehin C, Perennes C, Bureau JM, Meijer L et al. Roscovitine, a novel cyclin-dependent kinase inhibitor, characterizes restriction point and G2/M transition in tobacco BY-2 cell suspension. Plant J 1997; 12: 191–202.

    Article  CAS  Google Scholar 

  28. Rosania GR, Merlie Jr J, Gray N, Chang YT, Schultz PG, Heald R . A cyclin-dependent kinase inhibitor inducing cancer cell differentiation: biochemical identification using Xenopus egg extracts. Proc Natl Acad Sci USA 1999; 96: 4797–4802.

    Article  CAS  Google Scholar 

  29. Whittaker SR, Te Poele RH, Chan F, Linardopoulos S, Walton MI, Garrett MD et al. The cyclin-dependent kinase inhibitor seliciclib (R-roscovitine; CYC202) decreases the expression of mitotic control genes and prevents entry into mitosis. Cell Cycle 2007; 6: 3114–3131.

    Article  CAS  Google Scholar 

  30. Meijer L . Chemical inhibitors of cyclin-dependent kinases. Trends Cell Biol 1996; 6: 393–397.

    Article  CAS  Google Scholar 

  31. Planchais S, Glab N, Inze D, Bergounioux C . Chemical inhibitors: a tool for plant cell cycle studies. FEBS Lett 2000; 476: 78–83.

    Article  CAS  Google Scholar 

  32. Barr FA, Sillje HH, Nigg EA . Polo-like kinases and the orchestration of cell division. Nat Rev Mol Cell Biol 2004; 5: 429–440.

    Article  CAS  Google Scholar 

  33. Taylor S, Peters JM . Polo and Aurora kinases: lessons derived from chemical biology. Curr Opin Cell Biol 2008; 20: 77–84.

    Article  CAS  Google Scholar 

  34. Perez de Castro I, de Carcer G, Montoya G, Malumbres M . Emerging cancer therapeutic opportunities by inhibiting mitotic kinases. Curr Opin Pharmacol 2008; 8: 375–383.

    Article  CAS  Google Scholar 

  35. Gadea BB, Ruderman JV . Aurora kinase inhibitor ZM447439 blocks chromosome-induced spindle assembly, the completion of chromosome condensation, and the establishment of the spindle integrity checkpoint in Xenopus egg extracts. Mol Biol Cell 2005; 16: 1305–1318.

    Article  CAS  Google Scholar 

  36. Lenart P, Petronczki M, Steegmaier M, Di Fiore B, Lipp JJ, Hoffmann M et al. The small-molecule inhibitor BI 2536 reveals novel insights into mitotic roles of polo-like kinase 1. Curr Biol 2007; 17: 304–315.

    Article  CAS  Google Scholar 

  37. Sun TT, Green H . Differentiation of the epidermal keratinocyte in cell culture: formation of the cornified envelope. Cell 1976; 9 (4 Part 1): 511–521.

    Article  CAS  Google Scholar 

  38. Fernandez-Capetillo O, Lee A, Nussenzweig M, Nussenzweig A . H2AX: the histone guardian of the genome. DNA Repair (Amst) 2004; 3: 959–967.

    Article  CAS  Google Scholar 

  39. Taylor WR, Stark GR . Regulation of the G2/M transition by p53. Oncogene 2001; 20: 1803–1815.

    Article  CAS  Google Scholar 

  40. Swift LP, Rephaeli A, Nudelman A, Phillips DR, Cutts SM . Doxorubicin-DNA adducts induce a non-topoisomerase II-mediated form of cell death. Cancer Res 2006; 66: 4863–4871.

    Article  CAS  Google Scholar 

  41. Dazard JE, Piette J, Basset-Seguin N, Blanchard JM, Gandarillas A . Switch from p53 to MDM2 as differentiating human keratinocytes lose their proliferative potential and increase in cellular size. Oncogene 2000; 19: 3693–3705.

    Article  CAS  Google Scholar 

  42. Medema RH, Klompmaker R, Smits VA, Rijksen G . p21waf1 can block cells at two points in the cell cycle, but does not interfere with processive DNA-replication or stress-activated kinases. Oncogene 1998; 16: 431–441.

    Article  CAS  Google Scholar 

  43. Ullah Z, Lee CY, Depamphilis ML . Cip/Kip cyclin-dependent protein kinase inhibitors and the road to polyploidy. Cell Division 2009; 4: 10.

    Article  Google Scholar 

  44. Krasinska L, Cot E, Fisher D . Selective chemical inhibition as a tool to study Cdk1 and Cdk2 functions in the cell cycle. Cell Cycle 2008; 7: 1702–1708.

    Article  CAS  Google Scholar 

  45. Coudreuse D, Nurse P . Driving the cell cycle with a minimal CDK control network. Nature 2010; 468: 1074–1079.

    Article  CAS  Google Scholar 

  46. Yin XY, Grove L, Datta NS, Katula K, Long MW, Prochownik EV . Inverse regulation of cyclin B1 by c-Myc and p53 and induction of tetraploidy by cyclin B1 overexpression. Cancer Res 2001; 61: 6487–6493.

    CAS  PubMed  Google Scholar 

  47. Herold S, Wanzel M, Beuger V, Frohme C, Beul D, Hillukkala T et al. Negative regulation of the mammalian UV response by Myc through association with Miz-1. Mol Cell 2002; 10: 509–521.

    Article  CAS  Google Scholar 

  48. Seoane J, Le HV, Massague J . Myc suppression of the p21(Cip1) Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature 2002; 419: 729–734.

    Article  CAS  Google Scholar 

  49. Beer S, Zetterberg A, Ihrie RA, McTaggart RA, Yang Q, Bradon N et al. Developmental context determines latency of MYC-induced tumorigenesis. PLoS Biol 2004; 2: e332.

    Article  Google Scholar 

  50. Muñoz-Alonso MJ, Ceballos L, Bretones G, Frade P, Leon J, Gandarillas A . MYC accelerates p21(CIP) -induced megakaryocytic differentiation involving early mitosis arrest in leukemia cells. J Cell Physiol 2012; 227: 2069–2078.

    Article  Google Scholar 

  51. Campaner S, Doni M, Hydbring P, Verrecchia A, Bianchi L, Sardella D et al. Cdk2 suppresses cellular senescence induced by the c-myc oncogene. Nat Cell Biol 2010; 12: 54–59; sup pp 1–14.

    Article  CAS  Google Scholar 

  52. Edgar BA, Orr-Weaver TL . Endoreplication cell cycles: more for less. Cell 2001; 105: 297–306.

    Article  CAS  Google Scholar 

  53. Lilly MA, Duronio RJ . New insights into cell cycle control from the Drosophila endocycle. Oncogene 2005; 24: 2765–2775.

    Article  CAS  Google Scholar 

  54. Schellmann S, Hulskamp M . Epidermal differentiation: trichomes in Arabidopsis as a model system. Int J Dev Biol 2005; 49: 579–584.

    Article  Google Scholar 

  55. Noya F, Chien WM, Broker TR, Chow LT . p21cip1 Degradation in differentiated keratinocytes is abrogated by costabilization with cyclin E induced by human papillomavirus E7. J Virol 2001; 75: 6121–6134.

    Article  CAS  Google Scholar 

  56. Evan G, Littlewood T . A matter of life and cell death. Science 1998; 281: 1317–1322.

    Article  CAS  Google Scholar 

  57. Halazonetis TD, Gorgoulis VG, Bartek J . An oncogene-induced DNA damage model for cancer development. Science 2008; 319: 1352–1355.

    Article  CAS  Google Scholar 

  58. Gandarillas A . Epidermal differentiation, apoptosis, and senescence: common pathways. Exp Gerontol 2000; 35: 53–62.

    Article  CAS  Google Scholar 

  59. Iglesias-Ara A, Zenarruzabeitia O, Fernandez-Rueda J, Sanchez-Tillo E, Field SJ, Celada A et al. Accelerated DNA replication in E2F1- and E2F2-deficient macrophages leads to induction of the DNA damage response and p21(CIP1)-dependent senescence. Oncogene 2010; 29: 5579–5590.

    Article  CAS  Google Scholar 

  60. Bester AC, Roniger M, Oren YS, Im MM, Sarni D, Chaoat M et al. Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell 2011; 145: 435–446.

    Article  CAS  Google Scholar 

  61. Garcia P, Frampton J, Ballester A, Cales C . Ectopic expression of cyclin E allows non-endomitotic megakaryoblastic K562 cells to establish re-replication cycles. Oncogene 2000; 19: 1820–1833.

    Article  CAS  Google Scholar 

  62. Rheinwald JG . Methods for clonal growth and serial cultivation of normal human epidermal keratinocytes and mesothelial cells. In: Baserga R (ed.). Cell Growth and Division. IRL Press: Oxford, 1989, pp 81–94.

    Google Scholar 

  63. Littlewood TD, Hancock DC, Danielian PS, Parker MG, Evan GI . A modified oestrogen receptor ligand-binding domain as an improved switch for the regulation of heterologous proteins. Nucleic Acids Res 1995; 23: 1686–1690.

    Article  CAS  Google Scholar 

  64. Simpson CL, Kojima S, Getsios S . RNA interference in keratinocytes and an organotypic model of human epidermis. Methods Mol Biol 2010; 585: 127–146.

    Article  CAS  Google Scholar 

  65. Itahana K, Campisi J, Dimri GP . Methods to detect biomarkers of cellular senescence: the senescence-associated beta-galactosidase assay. Methods Mol Biol 2007; 371: 21–31.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are especially grateful to Jean-Claude Rossi and Javier León for their strong support. We thank Bruno Amati, Pierre Roux and Jonathon Pines for providing DNA constructs, J. León for reagents, Anne Blangy, Vjeko Dulic, Véronique Baldin and Thierry Lorca for technical advice, Daniel Fisher for helpful suggestions, Kathy Brooks and María Aramburu for technical support at flow cytometry, J. Leon and Philippe Pasero for critical reading of the manuscript, and Anna Solinís and Diana Solinís for reviewing the English writing. Human skin biopsies were provided with consent by St Jean and Hôpital La Peronye (Montpellier, France) and by the Chirurgical Paediatric Service of Hospital Marqués de Valdecilla (EdD; HMDV, Santander, Spain). MC was a recipient of a predoctoral fellowship from ARC (France). AG belongs to the INSERM (France) and the FMDV-IFIMAV (Spain) and was financially supported by the INSERM and the ISCIII (Spain). AF and LC were employed by FMDV-IFIMAV and supported by the ISCIII, MR was recipient of a postdoctoral contract by the FMDV-IFIMAV. This work was funded by ARC (AG; France), La Ligue contre le cancer (JMB; France), and Instituto de Salud Carlos III (AG; ISCIII-Programa Regiones Emergentes and Fondo de Investigaciones Sanitarias PI080890; Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Gandarillas.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freije, A., Ceballos, L., Coisy, M. et al. Cyclin E drives human keratinocyte growth into differentiation. Oncogene 31, 5180–5192 (2012). https://doi.org/10.1038/onc.2012.22

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.22

Keywords

This article is cited by

Search

Quick links