Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

p21CIP1 controls the squamous differentiation response to replication stress

Abstract

The control of cell fate is critical to homeostasis and cancer. Cell cycle cdk inhibitor p21CIP1 has a central and paradoxical role in the regulatory crossroads leading to senescence, apoptosis, or differentiation. p21 is an essential target of tumor suppressor p53, but it also is regulated independently. In squamous self-renewal epithelia continuously exposed to mutagenesis, p21 controls cell fate by mechanisms still intriguing. We previously identified a novel epidermoid DNA damage-differentiation response. We here show that p21 intervenes in the mitosis block that is required for the squamous differentiation response to cell cycle deregulation and replication stress. The inactivation of endogenous p21 in human primary keratinocytes alleviated the differentiation response to oncogenic loss of p53 or overexpression of the DNA replication major regulator Cyclin E. The bypass of p21-induced mitotic block involving upregulation of Cyclin B allowed DNA damaged cells to escape differentiation and continue to proliferate. In addition, loss of p21 drove keratinocytes from differentiation to apoptosis upon moderate UV irradiation. The results show that p21 is required to drive keratinocytes towards differentiation in response to genomic stress and shed light into its dual and paradoxical role in carcinogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: p21 knockdown results in loss of squamous differentiation.
Fig. 2: p21 is required for the antiproliferative differentiation response to inactivation of p53.
Fig. 3: Loss of p21 drives p53 knockdown cells to proliferate with high levels of DNA damage.
Fig. 4: p21 mediates the squamous differentiation response to deregulation of Cyclin E.
Fig. 5: Loss of p21 allows keratinocytes to proliferate with high levels of Cyclin E-induced replication stress.
Fig. 6: Loss of p21 drives UV-induced squamous differentiation into apoptosis.
Fig. 7: Model for p21 dependent and independent triggers of squamous terminal squamous differentiation.

Similar content being viewed by others

References

  1. Abbas T, Dutta A. p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer. 2009;9:400–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. El-Deiry WS. p21(WAF1) mediates cell-cycle inhibition, relevant to cancer suppression and therapy. Cancer Res. 2016;76:5189–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Galanos P, Vougas K, Walter D, Polyzos A, Maya-Mendoza A, Haagensen EJ, et al. Chronic p53-independent p21 expression causes genomic instability by deregulating replication licensing. Nat Cell Biol. 2016;18:777–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Georgakilas AG, Martin OA, Bonner WM. p21: a two-faced genome guardian. Trends Mol Med. 2017;23:310–9.

    Article  CAS  PubMed  Google Scholar 

  5. Kreis NN, Louwen F, Yuan J. Less understood issues: p21(Cip1) in mitosis and its therapeutic potential. Oncogene 2015;34:1758–67.

    Article  CAS  PubMed  Google Scholar 

  6. Aylon Y, Oren M. p53: guardian of ploidy. Mol Oncol. 2011;5:315–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Medema RH, Klompmaker R, Smits VA, Rijksen G. p21waf1 can block cells at two points in the cell cycle, but does not interfere with processive DNA-replication or stress-activated kinases. Oncogene 1998;16:431–41.

    Article  CAS  PubMed  Google Scholar 

  8. Parker SB, Eichele G, Zhang P, Rawls A, Sands AT, Bradley A, et al. p53-independent expression of p21Cip1 in muscle and other terminally differentiating cells. Science 1995;267:1024–7.

    Article  CAS  PubMed  Google Scholar 

  9. Dotto GP. p21(WAF1/Cip1): more than a break to the cell cycle? Biochim Biophys Acta. 2000;1471:M43–56.

    CAS  PubMed  Google Scholar 

  10. Liu M, Wikonkal NM, Brash DE. UV induces p21WAF1/CIP1 protein in keratinocytes without p53. J InvestIG Dermatol. 1999;113:283–4.

    Article  CAS  PubMed  Google Scholar 

  11. Weinberg WC, Denning MF. P21Waf1 control of epithelial cell cycle and cell fate. Crit Rev Oral Biol Med. 2002;13:453–64.

    Article  PubMed  Google Scholar 

  12. Ponten F, Berne B, Ren ZP, Nister M, Ponten J. Ultraviolet light induces expression of p53 and p21 in human skin: effect of sunscreen and constitutive p21 expression in skin appendages. J Invest Dermatol. 1995;105:402–6.

    Article  CAS  PubMed  Google Scholar 

  13. Yook JI, Kim J. Expression of p21WAF1/CIP1 is unrelated to p53 tumour suppressor gene status in oral squamous cell carcinomas. Oral Oncol. 1998;34:198–203.

    Article  CAS  PubMed  Google Scholar 

  14. el-Deiry WS, Tokino T, Waldman T, Oliner JD, Velculescu VE, Burrell M, et al. Topological control of p21WAF1/CIP1 expression in normal and neoplastic tissues. Cancer Res. 1995;55:2910–9.

    CAS  PubMed  Google Scholar 

  15. Di Cunto F, Topley G, Calautti E, Hsiao J, Ong L, Seth PK, et al. Inhibitory function of p21Cip1/WAF1 in differentiation of primary mouse keratinocytes independent of cell cycle control. Science. 1998;280:1069–72.

    Article  PubMed  Google Scholar 

  16. Topley GI, Okuyama R, Gonzales JG, Conti C, Dotto GP. p21(WAF1/Cip1) functions as a suppressor of malignant skin tumor formation and a determinant of keratinocyte stem-cell potential. Proc Natl Acad Sci USA. 1999;96:9089–94.

    Article  CAS  PubMed  Google Scholar 

  17. Alonso-Lecue P, de Pedro I, Coulon V, Molinuevo R, Lorz C, Segrelles C, et al. Inefficient differentiation response to cell cycle stress leads to genomic instability and malignant progression of squamous carcinoma cells. Cell Death Dis. 2017;8:e2901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Macheret M, Halazonetis TD. DNA replication stress as a hallmark of cancer. Annu Rev Pathol. 2015;10:425–48.

    Article  CAS  PubMed  Google Scholar 

  19. Freije A, Ceballos L, Coisy M, Barnes L, Rosa M, De Diego E, et al. Cyclin E drives human keratinocyte growth into differentiation. Oncogene 2012;31:5180–92.

    Article  CAS  PubMed  Google Scholar 

  20. Gandarillas A. The mysterious human epidermal cell cycle, or an oncogene-induced differentiation checkpoint. Cell Cycle. 2012;11:4507–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Freije A, Molinuevo R, Ceballos L, Cagigas M, Alonso-Lecue P, Rodriguez R, et al. Inactivation of p53 in human keratinocytes leads to squamous differentiation and shedding via replication stress and mitotic slippage. Cell Rep. 2014;9:1349–60.

    Article  CAS  PubMed  Google Scholar 

  22. de Pedro I, Alonso-Lecue P, Sanz-Gomez N, Freije A, Gandarillas A. Sublethal UV irradiation induces squamous differentiation via a p53-independent, DNA damage-mitosis checkpoint. Cell Death Dis. 2018;9:1094.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Sanz-Gómez N, de Pedro I, Ortigosa B, Santamaria D, Malumbres M, de Carcer G, et al. Squamous differentiation requires G2/mitosis slippage to avoid apoptosis. Cell Death Differ. 2020;27:2451–67.

  24. Harvat BL, Wang A, Seth P, Jetten AM. Up-regulation of p27Kip1, p21WAF1/Cip1 and p16Ink4a is associated with, but not sufficient for, induction of squamous differentiation. J Cell Sci. 1998;111:1185–96.

    CAS  PubMed  Google Scholar 

  25. Dazard JE, Piette J, Basset-Seguin N, Blanchard JM, Gandarillas A. Switch from p53 to MDM2 as differentiating human keratinocytes lose their proliferative potential and increase in cellular size. Oncogene 2000;19:3693–705.

    Article  CAS  PubMed  Google Scholar 

  26. Mullers E, Silva Cascales H, Jaiswal H, Saurin AT, Lindqvist A. Nuclear translocation of Cyclin B1 marks the restriction point for terminal cell cycle exit in G2 phase. Cell Cycle. 2014;13:2733–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kolly C, Suter MM, Muller EJ. Proliferation, cell cycle exit, and onset of terminal differentiation in cultured keratinocytes: pre-programmed pathways in control of C-Myc and Notch1 prevail over extracellular calcium signals. J Invest Dermatol. 2005;124:1014–25.

    Article  CAS  PubMed  Google Scholar 

  28. Borowiec AS, Delcourt P, Dewailly E, Bidaux G. Optimal differentiation of in vitro keratinocytes requires multifactorial external control. PLoS ONE. 2013;8:e77507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Halazonetis TD, Gorgoulis VG, Bartek J. An oncogene-induced DNA damage model for cancer development. Science 2008;319:1352–5.

    Article  CAS  PubMed  Google Scholar 

  30. Teixeira LK, Reed SI, Cyclin E. Deregulation and Genomic Instability. Adv Exp Med Biol. 2017;1042:527–47.

    Article  CAS  PubMed  Google Scholar 

  31. Zanet J, Freije A, Ruiz M, Coulon V, Sanz JR, Chiesa J, et al. A mitosis block links active cell cycle with human epidermal differentiation and results in endoreplication. PLoS ONE. 2010;5:e15701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ziegler A, Jonason AS, Leffell DJ, Simon JA, Sharma HW, Kimmelman J, et al. Sunburn and p53 in the onset of skin cancer. Nature 1994;372:773–6.

    Article  CAS  PubMed  Google Scholar 

  33. Shea CR, McNutt NS, Volkenandt M, Lugo J, Prioleau PG, Albino AP. Overexpression of p53 protein in basal cell carcinomas of human skin. Am J Pathol. 1992;141:25–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Brash DE. Roles of the transcription factor p53 in keratinocyte carcinomas. Br J Dermatol. 2006;154:8–10.

    Article  CAS  PubMed  Google Scholar 

  35. Ponten J, Adami HO, Bergstrom R, Dillner J, Friberg LG, Gustafsson L, et al. Strategies for global control of cervical cancer. Int J Cancer. 1995;60:1–26.

    Article  CAS  PubMed  Google Scholar 

  36. Jonason AS, Kunala S, Price GJ, Restifo RJ, Spinelli HM, Persing JA, et al. Frequent clones of p53-mutated keratinocytes in normal human skin. Proc Natl Acad Sci USA. 1996;93:14025–9.

    Article  CAS  PubMed  Google Scholar 

  37. Ren ZP, Ahmadian A, Ponten F, Nister M, Berg C, Lundeberg J, et al. Benign clonal keratinocyte patches with p53 mutations show no genetic link to synchronous squamous cell precancer or cancer in human skin. Am J Pathol. 1997;150:1791–803.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. le Pelletier F, Soufir N, de La Salmoniere P, Janin A, Basset-Seguin N. p53 Patches are not increased in patients with multiple nonmelanoma skin cancers. J Invest Dermatol. 2001;117:1324–5.

    Article  PubMed  Google Scholar 

  39. Molinuevo R, Freije A, Contreras L, Sanz J, Gandarillas A. The DNA damage response links human squamous proliferation with differentiation. J Cell Biol. 2020;219:e202001063.

  40. Andreassen PR, Margolis RL. Microtubule dependency of p34cdc2 inactivation and mitotic exit in mammalian cells. J Cell Biol. 1994;127:789–802.

    Article  CAS  PubMed  Google Scholar 

  41. Brito DA, Rieder CL. Mitotic checkpoint slippage in humans occurs via cyclin B destruction in the presence of an active checkpoint. Curr Biol. 2006;16:1194–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Potapova TA, Daum JR, Pittman BD, Hudson JR, Jones TN, Satinover DL, et al. The reversibility of mitotic exit in vertebrate cells. Nature. 2006;440:954–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rheinwald JG. Methods for clonal growth and serial cultivation of normal human epidermal keratinocytes and mesothelial cells. In: Baserga R, editor. Cell growth and division. Oxford: IRL Press; 1989. p. 81–94.

  44. Gandarillas A, Watt FM. c-Myc promotes differentiation of human epidermal stem cells. Genes Dev. 1997;11:2869–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kim JS, Lee C, Bonifant CL, Ressom H, Waldman T. Activation of p53-dependent growth suppression in human cells by mutations in PTEN or PIK3CA. Mol Cell Biol. 2007;27:662–77.

    Article  CAS  PubMed  Google Scholar 

  46. Matson JP, Dumitru R, Coryell P, Baxley RM, Chen W, Twaroski K, et al. Rapid DNA replication origin licensing protects stem cell pluripotency. Elife. 2017;17;6:e30473. (Erratum in: Elife. 2019 Jun 5;8:e49040.)

  47. Freije A, Sanz-Gomez N, Gandarillas A. Genetic modification of human primary keratinocytes by lentiviral vectors. Methods Mol Biol. 2020;2109:113–23.

    Article  CAS  PubMed  Google Scholar 

  48. Kumar MG, Hurwitz SA, Cotton J, Spandau DF. Subphysiological concentrations of extracellular calcium sensitize normal human keratinocytes to UVB-induced apoptosis. Arch Dermatol Res. 1999;291:37–46.

    Article  CAS  PubMed  Google Scholar 

  49. Sanz-Gómez N, Freije A, Ceballos L, Obeso S, Sanz JR, Garcia-Reija F, et al. Response of head and neck epithelial cells to a DNA damage-differentiation checkpoint involving polyploidization. Head Neck. 2018;40:2487–97.

    Article  PubMed  Google Scholar 

  50. Sanz-Gómez N, Freije A, Gandarillas A. Keratinocyte differentiation by flow cytometry. Methods Mol Biol. 2020;2109:83–92.

    Article  PubMed  CAS  Google Scholar 

  51. Ritchie A, Gutierrez O, Fernandez-Luna JL. PAR bZIP-bik is a novel transcriptional pathway that mediates oxidative stress-induced apoptosis in fibroblasts. Cell Death Differ. 2009;16:838–46.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by Instituto de Salud Carlos III/FEDER (AG; Spain), grants PI14/00900 and PI17/01307. IdP was in part supported by lab resources, by ISCIII-FEDER PI1400900 and by a scholarship from IFC (Industrial Farmacéutica Cantabria, currently Cantabria Labs; Spain). JG is recipient of a predoctoral scholarship from Asociación Española Contra el Cáncer (AECC; Spain), PRDCA19003GALA. We thank Jeannette G. Cook for the doxycycline-inducible Cyclin E construct.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Gandarillas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Pedro, I., Galán-Vidal, J., Freije, A. et al. p21CIP1 controls the squamous differentiation response to replication stress. Oncogene 40, 152–162 (2021). https://doi.org/10.1038/s41388-020-01520-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-01520-8

This article is cited by

Search

Quick links