Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mitochondrial activation by inhibition of PDKII suppresses HIF1a signaling and angiogenesis in cancer

Abstract

Most solid tumors are characterized by a metabolic shift from glucose oxidation to glycolysis, in part due to actively suppressed mitochondrial function, a state that favors resistance to apoptosis. Suppressed mitochondrial function may also contribute to the activation of hypoxia-inducible factor 1α (HIF1α) and angiogenesis. We have previously shown that the inhibitor of pyruvate dehydrogenase kinase (PDK) dichloroacetate (DCA) activates glucose oxidation and induces apoptosis in cancer cells in vitro and in vivo. We hypothesized that DCA will also reverse the ‘pseudohypoxic’ mitochondrial signals that lead to HIF1α activation in cancer, even in the absence of hypoxia and inhibit cancer angiogenesis. We show that inhibition of PDKII inhibits HIF1α in cancer cells using several techniques, including HIF1α luciferase reporter assays. Using pharmacologic and molecular approaches that suppress the prolyl-hydroxylase (PHD)-mediated inhibition of HIF1α, we show that DCA inhibits HIF1α by both a PHD-dependent mechanism (that involves a DCA-induced increase in the production of mitochondria-derived α-ketoglutarate) and a PHD-independent mechanism, involving activation of p53 via mitochondrial-derived H2O2, as well as activation of GSK3β. Effective inhibition of HIF1α is shown by a decrease in the expression of several HIF1α regulated gene products as well as inhibition of angiogenesis in vitro in matrigel assays. More importantly, in rat xenotransplant models of non-small cell lung cancer and breast cancer, we show effective inhibition of angiogenesis and tumor perfusion in vivo, assessed by contrast-enhanced ultrasonography, nuclear imaging techniques and histology. This work suggests that mitochondria-targeting metabolic modulators that increase pyruvate dehydrogenase activity, in addition to the recently described pro-apoptotic and anti-proliferative effects, suppress angiogenesis as well, normalizing the pseudo-hypoxic signals that lead to normoxic HIF1α activation in solid tumors.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. Gatenby RA, Gillies RJ . Why do cancers have high aerobic glycolysis? Nat Rev Cancer 2004; 4: 891–899.

    CAS  Article  PubMed  Google Scholar 

  2. Michelakis ED, Webster L, Mackey JR . Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer. Br J Cancer 2008; 99: 989–994.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Pan JG, Mak TW . Metabolic targeting as an anticancer strategy: dawn of a new era? Sci STKE 2007; 2007: pe14.

    PubMed  Google Scholar 

  4. Vander Heiden MG, Cantley LC, Thompson CB . Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009; 324: 1029–1033.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Dromparis P, Sutendra G, Michelakis ED . The role of mitochondria in pulmonary vascular remodeling. J Mol Med 2010; 88: 1003–1010.

    CAS  Article  PubMed  Google Scholar 

  6. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB . The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 2008; 7: 11–20.

    CAS  Article  PubMed  Google Scholar 

  7. Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R et alA mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 2007; 11: 37–51.

    CAS  Article  PubMed  Google Scholar 

  8. Fantin VR, St-Pierre J, Leder P . Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 2006; 9: 425–434.

    CAS  Article  PubMed  Google Scholar 

  9. Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R et alThe M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 2008; 452: 230–233.

    CAS  Article  PubMed  Google Scholar 

  10. Chen Y, Cairns R, Papandreou I, Koong A, Denko NC . Oxygen consumption can regulate the growth of tumors, a new perspective on the Warburg effect. PLoS One 2009; 4: e7033.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sun RC, Fadia M, Dahlstrom JE, Parish CR, Board PG, Blackburn AC . Reversal of the glycolytic phenotype by dichloroacetate inhibits metastatic breast cancer cell growth in vitro and in vivo. Breast Cancer Res Treat 2010; 120: 253–260.

    CAS  Article  PubMed  Google Scholar 

  12. Sanchez-Arago M, Chamorro M, Cuezva JM . Selection of cancer cells with repressed mitochondria triggers colon cancer progression. Carcinogenesis 2010; 31: 567–576.

    CAS  Article  PubMed  Google Scholar 

  13. Cao W, Yacoub S, Shiverick KT, Namiki K, Sakai Y, Porvasnik S et alDichloroacetate (DCA) sensitizes both wild-type and over expressing Bcl-2 prostate cancer cells in vitro to radiation. Prostate 2008; 68: 1223–1231.

    CAS  Article  PubMed  Google Scholar 

  14. Wong JY, Huggins GS, Debidda M, Munshi NC, De Vivo I . Dichloroacetate induces apoptosis in endometrial cancer cells. Gynecol Oncol 2008; 109: 394–402.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Saed GM, Fletcher NM, Jiang ZL, Abu-Soud HM, Diamond MP . Dichloroacetate induces apoptosis of epithelial ovarian cancer cells through a mechanism involving modulation of oxidative stress. Reprod Sci 2011; 18: 1253–1261.

    CAS  Article  PubMed  Google Scholar 

  16. Vella S, Conti M, Tasso R, Cancedda R, Pagano A . Dichloroacetate (DCA) inhibits neuroblastoma growth by specifically acting against malignant undifferentiated cells. Int J Cancer 2011; 130: 1484–1493.

    Article  PubMed  Google Scholar 

  17. Michelakis ED, Sutendra G, Dromparis P, Webster L, Haromy A, Niven E et alMetabolic modulation of glioblastoma with dichloroacetate. Sci Transl Med 2010; 2: 31ra34.

    CAS  Article  PubMed  Google Scholar 

  18. Denko NC . Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer 2008; 8: 705–713.

    CAS  Article  PubMed  Google Scholar 

  19. Semenza GL . Hypoxia-inducible factor 1 (HIF-1) pathway. Sci STKE 2007; 2007: cm8.

    Article  PubMed  Google Scholar 

  20. Semenza GL . Hypoxia-inducible factors in physiology and medicine. Cell 2012; 148: 399–408.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. McFate T, Mohyeldin A, Lu H, Thakar J, Henriques J, Halim ND et alPyruvate dehydrogenase complex activity controls metabolic and malignant phenotype in cancer cells. J Biol Chem 2008; 283: 22700–22708.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Huang LE, Arany Z, Livingston DM, Bunn HF . Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its alpha subunit. J Biol Chem 1996; 271: 32253–32259.

    CAS  Article  PubMed  Google Scholar 

  23. Salceda S, Caro J . Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem 1997; 272: 22642–22647.

    CAS  Article  PubMed  Google Scholar 

  24. Wang GL, Jiang BH, Semenza GL . Effect of altered redox states on expression and DNA-binding activity of hypoxia-inducible factor 1. Biochem Biophys Res Commun 1995; 212: 550–556.

    CAS  Article  PubMed  Google Scholar 

  25. Brunelle JK, Bell EL, Quesada NM, Vercauteren K, Tiranti V, Zeviani M et alOxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metab 2005; 1: 409–414.

    CAS  Article  PubMed  Google Scholar 

  26. Mansfield KD, Guzy RD, Pan Y, Young RM, Cash TP, Schumacker PT et alMitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-alpha activation. Cell Metab 2005; 1: 393–399.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. MacKenzie ED, Selak MA, Tennant DA, Payne LJ, Crosby S, Frederiksen CM et alCell-permeating alpha-ketoglutarate derivatives alleviate pseudohypoxia in succinate dehydrogenase-deficient cells. Mol Cell Biol 2007; 27: 3282–3289.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Huang C, Zhang Z, Ding M, Li J, Ye J, Leonard SS et alVanadate induces p53 transactivation through hydrogen peroxide and causes apoptosis. J Biol Chem 2000; 275: 32516–32522.

    CAS  Article  PubMed  Google Scholar 

  29. Wang S, Leonard SS, Ye J, Ding M, Shi X . The role of hydroxyl radical as a messenger in Cr(VI)-induced p53 activation. Am J Physiol Cell Physiol 2000; 279: C868–C875.

    CAS  Article  PubMed  Google Scholar 

  30. Xie S, Wang Q, Wu H, Cogswell J, Lu L, Jhanwar-Uniyal M et alReactive oxygen species-induced phosphorylation of p53 on serine 20 is mediated in part by polo-like kinase-3. J Biol Chem 2001; 276: 36194–36199.

    CAS  Article  PubMed  Google Scholar 

  31. Watcharasit P, Bijur GN, Song L, Zhu J, Chen X, Jope RS . Glycogen synthase kinase-3beta (GSK3beta) binds to and promotes the actions of p53. J Biol Chem 2003; 278: 48872–48879.

    CAS  Article  PubMed  Google Scholar 

  32. Schmid T, Zhou J, Kohl R, Brune B . p300 relieves p53-evoked transcriptional repression of hypoxia-inducible factor-1 (HIF-1). Biochem J 2004; 380: 289–295.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Vousden KH, Ryan KM . p53 and metabolism. Nat Rev Cancer 2009; 9: 691–700.

    CAS  Article  PubMed  Google Scholar 

  34. Kaluzova M, Kaluz S, Lerman MI, Stanbridge EJ . DNA damage is a prerequisite for p53-mediated proteasomal degradation of HIF-1alpha in hypoxic cells and downregulation of the hypoxia marker carbonic anhydrase IX. Mol Cell Biol 2004; 24: 5757–5766.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Ravi R, Mookerjee B, Bhujwalla ZM, Sutter CH, Artemov D, Zeng Q et alRegulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. Genes Dev 2000; 14: 34–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Papandreou I, Goliasova T, Denko NC . Anti-cancer drugs that target metabolism, is dichloroacetate the new paradigm? Int J Cancer 2011; 128: 1001–1008.

    CAS  Article  PubMed  Google Scholar 

  37. Muangnoi P, Lu M, Lee J, Thepouyporn A, Mirzayans R, Le XC et alCytotoxicity, apoptosis and DNA damage induced by Alpinia galanga rhizome extract. Planta Med 2007; 73: 748–754.

    CAS  Article  PubMed  Google Scholar 

  38. Zamzami N, Kroemer G . The mitochondrion in apoptosis: how Pandora's box opens. Nat Rev Mol Cell Biol 2001; 2: 67–71.

    CAS  Article  PubMed  Google Scholar 

  39. Chen LB . Mitochondrial membrane potential in living cells. Annu Rev Cell Biol 1988; 4: 155–181.

    CAS  Article  PubMed  Google Scholar 

  40. Chandel NS, Vander Heiden MG, Thompson CB, Schumacker PT . Redox regulation of p53 during hypoxia. Oncogene 2000; 19: 3840–3848.

    CAS  Article  PubMed  Google Scholar 

  41. Kelly BD, Hackett SF, Hirota K, Oshima Y, Cai Z, Berg-Dixon S et alCell type-specific regulation of angiogenic growth factor gene expression and induction of angiogenesis in nonischemic tissue by a constitutively active form of hypoxia-inducible factor 1. Circ Res 2003; 93: 1074–1081.

    CAS  Article  PubMed  Google Scholar 

  42. Okuyama H, Krishnamachary B, Zhou YF, Nagasawa H, Bosch-Marce M, Semenza GL . Expression of vascular endothelial growth factor receptor 1 in bone marrow-derived mesenchymal cells is dependent on hypoxia-inducible factor 1. J Biol Chem 2006; 281: 15554–15563.

    CAS  Article  PubMed  Google Scholar 

  43. Chan DA, Sutphin PD, Denko NC, Giaccia AJ . Role of prolyl hydroxylation in oncogenically stabilized hypoxia-inducible factor-1alpha. J Biol Chem 2002; 277: 40112–40117.

    CAS  Article  PubMed  Google Scholar 

  44. Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O'Rourke J, Mole DR et alC. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 2001; 107: 43–54.

    CAS  Article  PubMed  Google Scholar 

  45. Gao P, Zhang H, Dinavahi R, Li F, Xiang Y, Raman V et alHIF-dependent antitumorigenic effect of antioxidants in vivo. Cancer Cell 2007; 12: 230–238.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Pastorino JG, Hoek JB, Hexokinase II . the integration of energy metabolism and control of apoptosis. Curr Med Chem 2003; 10: 1535–1551.

    CAS  Article  PubMed  Google Scholar 

  47. Pastorino JG, Hoek JB, Shulga N . Activation of glycogen synthase kinase 3beta disrupts the binding of hexokinase II to mitochondria by phosphorylating voltage-dependent anion channel and potentiates chemotherapy-induced cytotoxicity. Cancer Res 2005; 65: 10545–10554.

    CAS  Article  PubMed  Google Scholar 

  48. Sutendra G, Bonnet S, Rochefort G, Haromy A, Folmes KD, Lopaschuk GD et alFatty acid oxidation and malonyl-CoA decarboxylase in the vascular remodeling of pulmonary hypertension. Sci Transl Med 2010; 2: 44ra58.

    Article  PubMed  Google Scholar 

  49. Mottet D, Dumont V, Deccache Y, Demazy C, Ninane N, Raes M et alRegulation of hypoxia-inducible factor-1alpha protein level during hypoxic conditions by the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3beta pathway in HepG2 cells. J Biol Chem 2003; 278: 31277–31285.

    CAS  Article  PubMed  Google Scholar 

  50. Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD et alActivation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 1996; 16: 4604–4613.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Pugh CW, Ratcliffe PJ . Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 2003; 9: 677–684.

    CAS  Article  PubMed  Google Scholar 

  52. Karshovska E, Zernecke A, Sevilmis G, Millet A, Hristov M, Cohen CD et alExpression of HIF-1alpha in injured arteries controls SDF-1alpha mediated neointima formation in apolipoprotein E deficient mice. Arterioscler Thromb Vasc Biol 2007; 27: 2540–2547.

    CAS  Article  PubMed  Google Scholar 

  53. Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME et alProgenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 2004; 10: 858–864.

    CAS  Article  PubMed  Google Scholar 

  54. Aghi M, Cohen KS, Klein RJ, Scadden DT, Chiocca EA . Tumor stromal-derived factor-1 recruits vascular progenitors to mitotic neovasculature, where microenvironment influences their differentiated phenotypes. Cancer Res 2006; 66: 9054–9064.

    CAS  Article  PubMed  Google Scholar 

  55. Spaeth EL, Dembinski JL, Sasser AK, Watson K, Klopp A, Hall B et alMesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS One 2009; 4: e4992.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Crawford Y, Kasman I, Yu L, Zhong C, Wu X, Modrusan Z et alPDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell 2009; 15: 21–34.

    CAS  Article  PubMed  Google Scholar 

  57. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D et alMinimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8: 315–317.

    CAS  Article  PubMed  Google Scholar 

  58. Colter DC, Class R, DiGirolamo CM, Prockop DJ . Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proc Natl Acad Sci USA 2000; 97: 3213–3218.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. Rebelatto CK, Aguiar AM, Moretao MP, Senegaglia AC, Hansen P, Barchiki F et alDissimilar differentiation of mesenchymal stem cells from bone marrow, umbilical cord blood, and adipose tissue. Exp Biol Med (Maywood) 2008; 233: 901–913.

    CAS  Article  Google Scholar 

  60. Honczarenko M, Le Y, Swierkowski M, Ghiran I, Glodek AM, Silberstein LE . Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells 2006; 24: 1030–1041.

    CAS  Article  PubMed  Google Scholar 

  61. Askari AT, Unzek S, Popovic ZB, Goldman CK, Forudi F, Kiedrowski M et alEffect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet 2003; 362: 697–703.

    CAS  Article  PubMed  Google Scholar 

  62. Sutendra G, Dromparis P, Wright P, Bonnet S, Haromy A, Hao Z et alThe role of nogo and the mitochondria-endoplasmic reticulum unit in pulmonary hypertension. Sci Transl Med 2011; 3: 88ra55.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. Douwes DPB, Hogendoorn PC, Kuipers-Dijkshoorn N, Prins FA, van Duinen SG, Taschner PE et alSDHD mutations in head and neck paragangliomas result in destabilization of complex II in the mitochondrial respiratory chain with loss of enzymatic activity and abnormal mitochondrial morphology. J Pathol 2003; 201: 480–486.

    Article  Google Scholar 

  64. Tomlinson IP, Alam NA, Rowan AJ, Barclay E, Jaeger EE, Kelsell D et alGermline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet 2002; 30: 406–410.

    CAS  Article  PubMed  Google Scholar 

  65. Sutendra G, Dromparis P, Bonnet S, Haromy A, McMurtry MS, Bleackley RC et alPyruvate dehydrogenase inhibition by the inflammatory cytokine TNFalpha contributes to the pathogenesis of pulmonary arterial hypertension. J Mol Med 2011; 89: 771–783.

    CAS  Article  PubMed  Google Scholar 

  66. Semenza GL . Targeting HIF-1 for cancer therapy. Nat Rev Cancer 2003; 3: 721–732.

    CAS  Article  PubMed  Google Scholar 

  67. Bhattacharyya A, Chattopadhyay R, Hall EH, Mebrahtu ST, Ernst PB, Crowe SE . Mechanism of hypoxia-inducible factor 1 alpha-mediated Mcl1 regulation in Helicobacter pylori-infected human gastric epithelium. Am J Physiol Gastrointest Liver Physiol 2010; 299: G1177–G1186.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. Lu CW, Lin SC, Chen KF, Lai YY, Tsai SJ . Induction of pyruvate dehydrogenase kinase-3 by hypoxia-inducible factor-1 promotes metabolic switch and drug resistance. J Biol Chem 2008; 283: 28106–28114.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. Kim JW, Tchernyshyov I, Semenza GL, Dang CV . HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 2006; 3: 177–185.

    Article  PubMed  Google Scholar 

  70. Luo W, Hu H, Chang R, Zhong J, Knabel M, O'Meally R et alPyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell 2011; 145: 732–744.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. Francia G, Emmenegger U, Kerbel RS . Tumor-associated fibroblasts as ‘Trojan Horse’ mediators of resistance to anti-VEGF therapy. Cancer Cell 2009; 15: 3–5.

    CAS  Article  PubMed  Google Scholar 

  72. Bowker-Kinley MM, Davis WI, Wu P, Harris RA, Popov KM . Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochem J 1998; 329 (Pt 1): 191–196.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. Knoechel TR, Tucker AD, Robinson CM, Phillips C, Taylor W, Bungay PJ et alRegulatory roles of the N-terminal domain based on crystal structures of human pyruvate dehydrogenase kinase 2 containing physiological and synthetic ligands. Biochemistry 2006; 45: 402–415.

    CAS  Article  PubMed  Google Scholar 

  74. Li J, Kato M, Chuang DT . Pivotal role of the C-terminal DW-motif in mediating inhibition of pyruvate dehydrogenase kinase 2 by dichloroacetate. J Biol Chem 2009; 284: 34458–34467.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. Babu E, Ramachandran S, Coothankandaswamy V, Elangovan S, Prasad PD, Ganapathy V et alRole of SLC5A8, a plasma membrane transporter and a tumor suppressor, in the antitumor activity of dichloroacetate. Oncogene 2011; 30: 4026–4037.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was funded by grants from the Canadian Institutes for Health Research (CIHR) and Alberta Innovates Health Solutions (AIHS) to EDM. We would like to thank Dr Gregg Semenza for his help, providing materials and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E D Michelakis.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sutendra, G., Dromparis, P., Kinnaird, A. et al. Mitochondrial activation by inhibition of PDKII suppresses HIF1a signaling and angiogenesis in cancer. Oncogene 32, 1638–1650 (2013). https://doi.org/10.1038/onc.2012.198

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.198

Keywords

  • mitochondria
  • angiogenesis
  • hypoxia-inducible-factor
  • stem cell
  • tumor perfusion
  • vascularity

This article is cited by

Search

Quick links