Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

iASPP is essential for HIF-1α stabilization to promote angiogenesis and glycolysis via attenuating VHL-mediated protein degradation

Abstract

Hypoxia-inducible factor-1α (HIF-1α) plays central roles in the hypoxia response. It is highly expressed in multiple cancers, but not always correlated with hypoxia. Mutation of the von Hippel–Lindau (VHL) gene, which encodes an E3 ligase, contributes to the constructive activation of HIF-1α in specific tumor types, as exemplified by renal cell carcinoma; but how VHL wild-type tumors acquire this ability is not completely understood. Here, we found that the oncogene iASPP (inhibitor of apoptosis-simulating protein of p53) plays essential roles in such a context. Genetic inhibition of iASPP reduced tumor growth, accompanied by impaired angiogenesis, increased areas of tumor necrosis, and reduced glycolysis that was HIF-1α-dependent. These abilities of iASPP were validated by in vitro assays. Mechanistically, iASPP directly binds VHL at its β domain, a region also involved in HIF-1α binding, therefore blocking VHL’s binding and the subsequent degradation of HIF-1α protein under normoxia. iASPP levels correlate with HIF-1α protein and vascular endothelial growth factor (VEGF) and the glucose transporter protein type 1(GLUT1), representative HIF-1α target genes, in human colon cancer tissues. Furthermore, inhibition of iASPP expression synergizes with low toxic dose of the HIF-1α inhibitor YC-1 to inhibit HIF-1α expression and tumor growth. Our findings suggest that iASPP contributes to HIF-1α activation in cancers, and that iASPP-mediated HIF-1α stabilization has potential as a therapeutic approach against cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Inhibiting iASPP expression attenuates tumor growth through HIF-1ɑ signaling.
Fig. 2: iASPP activates HIF-1α-dependent pro-tumorigenic signals.
Fig. 3: iASPP promotes the transcriptional activity of HIF-1ɑ.
Fig. 4: iASPP stabilizes HIF-1α protein.
Fig. 5: iASPP prevents HIF-1α degradation by interfering with the VHL/PHD pathway.
Fig. 6: iASPP directly binds with VHL and prevents HIF-1α degradation.
Fig. 7: HIF-1α, iASPP, and VEGF expression are positively correlated in human clinical samples.
Fig. 8: iASPP inhibition increases tumor sensitivity to the HIF-1α inhibitor YC-1.

Similar content being viewed by others

References

  1. Lee P, Chandel NS. Cellular adaptation to hypoxia through hypoxia-inducible factors and beyond. Nat Rev Mol Cell Biol. 2020;21:268–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Triner D, Shah YM. Hypoxia-inducible factors: a central link between inflammation and cancer. J Clin Investig. 2016;126:3689–98.

    Article  PubMed  PubMed Central  Google Scholar 

  3. de Heer EC, Jalving M, Harris AL. HIFs, angiogenesis, and metabolism: elusive enemies in breast cancer. J Clin Investig. 2020;130:5074–87.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kuczynski EA, Vermeulen PB, Pezzella F, Kerbel RS, Reynolds AR. Vessel co-option in cancer. Nat Rev Clin Oncol. 2019;16:469–93.

    Article  CAS  PubMed  Google Scholar 

  5. Martínez-Reyes I, Chandel NS. Cancer metabolism: looking forward. Nat Rev Cancer. 2021.

  6. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001;292:468–72.

    Article  CAS  PubMed  Google Scholar 

  7. Kaelin WG Jr. The von Hippel-Lindau tumour suppressor protein: O2 sensing and cancer. Nat Rev Cancer. 2008;8:865–73.

    Article  CAS  PubMed  Google Scholar 

  8. Schofield CJ, Ratcliffe PJ. Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol. 2004;5:343–54.

    Article  CAS  PubMed  Google Scholar 

  9. LaGory EL, Giaccia AJ. The ever-expanding role of HIF in tumour and stromal biology. Nat Cell Biol. 2016;18:356–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3:721–32.

    Article  CAS  PubMed  Google Scholar 

  11. Zhong H, De Marzo AM, Laughner E, Lim M, Hilton DA, Zagzag D, et al. Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res. 1999;59:5830–5.

    CAS  PubMed  Google Scholar 

  12. Li H, Zhang W, Zhao K, Zhao D, Zheng S, Hu Y. A previously identified apoptosis inhibitor iASPP confers resistance to chemotherapeutic drugs by suppressing senescence in cancer cells. J Biol Chem. 2020;295:4049–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Maranchie JK, Vasselli JR, Riss J, Bonifacino JS, Linehan WM, Klausner RD. The contribution of VHL substrate binding and HIF1-alpha to the phenotype of VHL loss in renal cell carcinoma. Cancer Cell. 2002;1:247–55.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang H, Gao P, Fukuda R, Kumar G, Krishnamachary B, Zeller KI, et al. HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell. 2007;11:407–20.

    Article  CAS  PubMed  Google Scholar 

  15. Ghosh AK, Shanafelt TD, Cimmino A, Taccioli C, Volinia S, Liu CG, et al. Aberrant regulation of pVHL levels by microRNA promotes the HIF/VEGF axis in CLL B cells. Blood. 2009;113:5568–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang F, Zhang H, Mei Y, Wu M. Reciprocal regulation of HIF-1α and lincRNA-p21 modulates the Warburg effect. Mol Cell. 2014;53:88–100.

    Article  CAS  PubMed  Google Scholar 

  17. Lee YH, Bae HC, Noh KH, Song KH, Ye SK, Mao CP, et al. Gain of HIF-1α under normoxia in cancer mediates immune adaptation through the AKT/ERK and VEGFA axes. Clin Cancer Res. 2015;21:1438–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bergamaschi D, Samuels Y, O’Neil NJ, Trigiante G, Crook T, Hsieh JK, et al. iASPP oncoprotein is a key inhibitor of p53 conserved from worm to human. Nat Genet. 2003;33:162–7.

    Article  CAS  PubMed  Google Scholar 

  19. Trigiante G, Lu X. ASPP [corrected] and cancer. Nat Rev Cancer. 2006;6:217–26.

    Article  CAS  PubMed  Google Scholar 

  20. Cai Y, Qiu S, Gao X, Gu SZ, Liu ZJ. iASPP inhibits p53-independent apoptosis by inhibiting transcriptional activity of p63/p73 on promoters of proapoptotic genes. Apoptosis: Int J Program Cell Death. 2012;17:777–83.

    Article  CAS  Google Scholar 

  21. Lu M, Breyssens H, Salter V, Zhong S, Hu Y, Baer C, et al. Restoring p53 function in human melanoma cells by inhibiting MDM2 and cyclin B1/CDK1-phosphorylated nuclear iASPP. Cancer Cell. 2013;23:618–33.

    Article  CAS  PubMed  Google Scholar 

  22. Ge W, Zhao K, Wang X, Li H, Yu M, He M, et al. iASPP is an antioxidative factor and drives cancer growth and drug resistance by competing with Nrf2 for Keap1 binding. Cancer Cell. 2017;32:561–.e566.

    Article  CAS  PubMed  Google Scholar 

  23. Lu B, Guo H, Zhao J, Wang C, Wu G, Pang M, et al. Increased expression of iASPP, regulated by hepatitis B virus X protein-mediated NF-kappaB activation, in hepatocellular carcinoma. Gastroenterology. 2010;139:2183–.e2185.

    Article  CAS  PubMed  Google Scholar 

  24. Pandolfi S, Montagnani V, Lapucci A, Stecca B. HEDGEHOG/GLI-E2F1 axis modulates iASPP expression and function and regulates melanoma cell growth. Cell Death Differ. 2015;22:2006–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jia Y, Peng L, Rao Q, Xing H, Huai L, Yu P, et al. Oncogene iASPP enhances self-renewal of hematopoietic stem cells and facilitates their resistance to chemotherapy and irradiation. FASEB J. 2014;28:2816–27.

    Article  CAS  PubMed  Google Scholar 

  26. Lu B, Guo H, Zhao J, Wang C, Wu G, Pang M, et al. Increased expression of iASPP, regulated by hepatitis B virus X protein-mediated NF-κB activation, in hepatocellular carcinoma. Gastroenterology. 2010;139:2183–.e2185.

    Article  CAS  PubMed  Google Scholar 

  27. Jiang L, Siu MK, Wong OG, Tam KF, Lu X, Lam EW, et al. iASPP and chemoresistance in ovarian cancers: effects on paclitaxel-mediated mitotic catastrophe. Clin Cancer Res. 2011;17:6924–33.

    Article  CAS  PubMed  Google Scholar 

  28. Xiong Y, Sun F, Dong P, Watari H, Yue J, Yu MF, et al. iASPP induces EMT and cisplatin resistance in human cervical cancer through miR-20a-FBXL5/BTG3 signaling. J Exp Clin Cancer Res. 2017;36:48.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhao WH, Wu SQ, Zhang YD. Downregulation of miR-124 promotes the growth and invasiveness of glioblastoma cells involving upregulation of PPP1R13L. Int J Mol Med. 2013;32:101–7.

    Article  PubMed  Google Scholar 

  30. De Saedeleer CJ, Copetti T, Porporato PE, Verrax J, Feron O, Sonveaux P. Lactate activates HIF-1 in oxidative but not in Warburg-phenotype human tumor cells. PloS One. 2012;7:e46571.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999;399:271–5.

    Article  CAS  PubMed  Google Scholar 

  32. Appelhoff RJ, Tian YM, Raval RR, Turley H, Harris AL, Pugh CW, et al. Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J Biol Chem. 2004;279:38458–65.

    Article  CAS  PubMed  Google Scholar 

  33. Semenza GL. Hydroxylation of HIF-1: oxygen sensing at the molecular level. Physiology. 2004;19:176–82.

    Article  CAS  PubMed  Google Scholar 

  34. Jeong JW, Bae MK, Ahn MY, Kim SH, Sohn TK, Bae MH, et al. Regulation and destabilization of HIF-1alpha by ARD1-mediated acetylation. Cell. 2002;111:709–20.

    Article  CAS  PubMed  Google Scholar 

  35. Lonser RR, Glenn GM, Walther M, Chew EY, Libutti SK, Linehan WM, et al. von Hippel-Lindau disease. Lancet. 2003;361:2059–67.

    Article  CAS  PubMed  Google Scholar 

  36. Tanimoto K, Makino Y, Pereira T, Poellinger L. Mechanism of regulation of the hypoxia-inducible factor-1 alpha by the von Hippel-Lindau tumor suppressor protein. EMBO J. 2000;19:4298–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lang J, Zhao X, Wang X, Zhao Y, Li Y. Targeted co-delivery of the iron chelator deferoxamine and a HIF1α inhibitor impairs pancreatic tumor growth. ACS Nano. 2019;13:2176–89.

    CAS  PubMed  Google Scholar 

  38. Lu M, Breyssens H, Salter V, Zhong S, Hu Y, Baer C, et al. Restoring p53 function in human melanoma cells by inhibiting MDM2 and cyclin B1/CDK1-phosphorylated nuclear iASPP. Cancer Cell. 2016;30:822–3.

    Article  CAS  PubMed  Google Scholar 

  39. Gao K, Zhang Y, Shi Q, Zhang J, Zhang L, Sun H, et al. iASPP-PP1 complex is required for cytokinetic abscission by controlling CEP55 dephosphorylation. Cell Death Dis. 2018;9:528.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hu Y, Ge W, Wang X, Sutendra G, Zhao K, Dedeić Z, et al. Caspase cleavage of iASPP potentiates its ability to inhibit p53 and NF-κB. Oncotarget. 2015;6:42478–90.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ganapathy-Kanniappan S, Geschwind JF. Tumor glycolysis as a target for cancer therapy: progress and prospects. Mol Cancer. 2013;12:152.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kim JW, Roh JL, Park Y, Cho KJ, Choi SH, Nam SY, et al. Cytoplasmic iASPP expression as a novel prognostic indicator in oral cavity squamous cell carcinoma. Ann Surg Oncol. 2015;22:662–9.

    Article  PubMed  Google Scholar 

  43. De Palma M, Biziato D, Petrova TV. Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer. 2017;17:457–74.

    Article  PubMed  Google Scholar 

  44. Merlo A, Bernardo-Castiñeira C, Sáenz-de-Santa-María I, Pitiot AS, Balbín M, Astudillo A, et al. Role of VHL, HIF1A and SDH on the expression of miR-210: Implications for tumoral pseudo-hypoxic fate. Oncotarget. 2017;8:6700–17.

    Article  PubMed  Google Scholar 

  45. Krzywinska E, Kantari-Mimoun C, Kerdiles Y, Sobecki M, Isagawa T, Gotthardt D, et al. Loss of HIF-1α in natural killer cells inhibits tumour growth by stimulating non-productive angiogenesis. Nat Commun. 2017;8:1597.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Tosetti F, Ferrari N, De Flora S, Albini A. Angioprevention’: angiogenesis is a common and key target for cancer chemopreventive agents. FASEB J. 2002;16:2–14.

    Article  CAS  PubMed  Google Scholar 

  47. Du SC, Zhu L, Wang YX, Liu J, Zhang D, Chen YL, et al. SENP1-mediated deSUMOylation of USP28 regulated HIF-1α accumulation and activation during hypoxia response. Cancer Cell Int. 2019;19:4.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kim Y, Nam HJ, Lee J, Park DY, Kim C. Methylation-dependent regulation of HIF-1α stability restricts retinal and tumour angiogenesis. Nat Commun. 2016;7:10347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kwon SJ, Song JJ, Lee YJ. Signal pathway of hypoxia-inducible factor-1alpha phosphorylation and its interaction with von Hippel-Lindau tumor suppressor protein during ischemia in MiaPaCa-2 pancreatic cancer cells. Clin Cancer Res. 2005;11:7607–13.

    Article  CAS  PubMed  Google Scholar 

  50. Geng H, Harvey CT, Pittsenbarger J, Liu Q, Beer TM, Xue C, et al. HDAC4 protein regulates HIF1α protein lysine acetylation and cancer cell response to hypoxia. J Biol Chem. 2011;286:38095–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bernardi R, Guernah I, Jin D, Grisendi S, Alimonti A, Teruya-Feldstein J, et al. PML inhibits HIF-1alpha translation and neoangiogenesis through repression of mTOR. Nature. 2006;442:779–85.

    Article  CAS  PubMed  Google Scholar 

  52. Domene C, Illingworth CJ. Effects of point mutations in pVHL on the binding of HIF-1α. Proteins. 2012;80:733–46.

    Article  CAS  PubMed  Google Scholar 

  53. Buckley DL, Van Molle I, Gareiss PC, Tae HS, Michel J, Noblin DJ, et al. Targeting the von Hippel-Lindau E3 ubiquitin ligase using small molecules to disrupt the VHL/HIF-1α interaction. J Am Chem Soc. 2012;134:4465–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hoefflin R, Harlander S. HIF-1α and HIF-2α differently regulate tumour development and inflammation of clear cell renal cell carcinoma in mice. Nat Commun. 2020;11:4111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mastrogiannaki M, Matak P, Keith B, Simon MC, Vaulont S, Peyssonnaux C. HIF-2alpha, but not HIF-1alpha, promotes iron absorption in mice. J Clin Investig. 2009;119:1159–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Luu VD, Boysen G, Struckmann K, Casagrande S, von Teichman A, Wild PJ, et al. Loss of VHL and hypoxia provokes PAX2 up-regulation in clear cell renal cell carcinoma. Clin Cancer Res. 2009;15:3297–304.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (No. 82025027, 31871389, 31741084, 32000517), China Postdoctoral Science Foundation (No. 2020M680045 and 2021T140161), and the Nature Science Foundation of Heilongjiang Province (No. YQ2021C024).

Author information

Authors and Affiliations

Authors

Contributions

YH designed the experiments and wrote the paper. DZ, SZ, XW, performed the experiments and analyzed the data. KZ generated shHIF-1α plasmids. HL was responsible for animal feeding and experimentation. LL collected clinical COAD samples.

Corresponding author

Correspondence to Ying Hu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, D., Zheng, S., Wang, X. et al. iASPP is essential for HIF-1α stabilization to promote angiogenesis and glycolysis via attenuating VHL-mediated protein degradation. Oncogene 41, 1944–1958 (2022). https://doi.org/10.1038/s41388-022-02234-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02234-9

Search

Quick links