Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Intersectin 1 is required for neuroblastoma tumorigenesis

Abstract

Intersectin 1 (ITSN1) is a scaffold protein that regulates diverse cellular pathways, including endocytosis and several signal transduction pathways, including phosphatidylinositol 3-kinase, Class IIβ (PI3K-C2β). ITSN1's transforming potential in vitro suggests that this scaffold protein may be involved in human tumorigenesis. Herein, we demonstrate that ITSN1 is expressed in primary human neuroblastoma tumors and tumor cell lines and is necessary for their in vitro and in vivo tumorigenic properties. Silencing ITSN1 significantly inhibits the anchorage independent growth of tumor cells in vitro and tumor formation in xenograft assays independent of MYCN status. Overexpression of the ITSN1 target, PI3K-C2β, rescues the soft agar growth of ITSN1-silenced cells demonstrating the importance of the ITSN1-PI3K-C2β pathway in neuroblastoma tumorigenesis. These findings represent the first demonstration that the ITSN1-PI3K-C2β pathway has a requisite role in human cancer, specifically neuroblastomas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Izbicka E, Izbicki T . Therapeutic strategies for the treatment of neuroblastoma. Curr Opin Investig Drugs 2005; 6: 1200–1214.

    CAS  PubMed  Google Scholar 

  2. Brodeur GM . Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer 2003; 3: 203–216.

    Article  CAS  Google Scholar 

  3. Chesler L, Schlieve C, Goldenberg DD, Kenney A, Kim G, McMillan A et al. Inhibition of phosphatidylinositol 3-kinase destabilizes Mycn protein and blocks malignant progression in neuroblastoma. Cancer Res 2006; 66: 8139–8146.

    Article  CAS  Google Scholar 

  4. Marone R, Cmiljanovic V, Giese B, Wymann MP . Targeting phosphoinositide 3-kinase: moving towards therapy. Biochim Biophys Acta 2008; 1784: 159–185.

    Article  CAS  Google Scholar 

  5. Ambros PF, Ambros IM, Brodeur GM, Haber M, Khan J, Nakagawara A et al. International consensus for neuroblastoma molecular diagnostics: report from the International Neuroblastoma Risk Group (INRG) Biology Committee. Br J Cancer 2009; 100: 1471–1482.

    Article  CAS  Google Scholar 

  6. Billottet C, Grandage VL, Gale RE, Quattropani A, Rommel C, Vanhaesebroeck B et al. A selective inhibitor of the p110delta isoform of PI 3-kinase inhibits AML cell proliferation and survival and increases the cytotoxic effects of VP16. Oncogene 2006; 25: 6648–6659.

    Article  CAS  Google Scholar 

  7. Boller D, Schramm A, Doepfner KT, Shalaby T, von Bueren AO, Eggert A et al. Targeting the phosphoinositide 3-kinase isoform p110delta impairs growth and survival in neuroblastoma cells. Clin Cancer Res 2008; 14: 1172–1181.

    Article  CAS  Google Scholar 

  8. Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S et al. High frequency of mutations of the PIK3CA gene in human cancers. Science 2004; 304: 554.

    Article  CAS  Google Scholar 

  9. Qian Z, Fernald AA, Godley LA, Larson RA, Le Beau MM . Expression profiling of CD34+ hematopoietic stem/progenitor cells reveals distinct subtypes of therapy-related acute myeloid leukemia. Proc Natl Acad Sci USA 2002; 99: 14925–14930.

    Article  CAS  Google Scholar 

  10. Sato N, Fukushima N, Maitra A, Iacobuzio-Donahue CA, van Heek NT, Cameron JL et al. Gene expression profiling identifies genes associated with invasive intraductal papillary mucinous neoplasms of the pancreas. Am J Pathol 2004; 164: 903–914.

    Article  CAS  Google Scholar 

  11. Armstrong SA, Staunton JE, Silverman LB, Pieters R, den Boer ML, Minden MD et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 2002; 30: 41–47.

    Article  CAS  Google Scholar 

  12. Marras E, Concari P, Cortellezzi L, Dondi D, De Eguileor M, Perletti G . Involvement of PI3K in PKCepsilon-mediated oncogenic signal in rat colonic epithelial cells. Int J Oncol 2001; 19: 395–399.

    CAS  PubMed  Google Scholar 

  13. Das M, Scappini E, Martin NP, Wong KA, Dunn S, Chen YJ et al. Regulation of neuron survival through an intersectin-phosphoinositide 3′-kinase C2beta-AKT pathway. Mol Cell Biol 2007; 27: 7906–7917.

    Article  CAS  Google Scholar 

  14. Arcaro A, Khanzada UK, Vanhaesebroeck B, Tetley TD, Waterfield MD, Seckl MJ . Two distinct phosphoinositide 3-kinases mediate polypeptide growth factor-stimulated PKB activation. EMBO J 2002; 21: 5097–5108.

    Article  CAS  Google Scholar 

  15. Katso RM, Pardo OE, Palamidessi A, Franz CM, Marinov M, De Laurentiis A et al. Phosphoinositide 3-Kinase C2beta regulates cytoskeletal organization and cell migration via Rac-dependent mechanisms. Mol Biol Cell 2006; 17: 3729–3744.

    Article  CAS  Google Scholar 

  16. O’Bryan JP . Intersecting pathways in cell biology. Sci Signal 2010; 3: re10.

    PubMed  PubMed Central  Google Scholar 

  17. Hussain NK, Jenna S, Glogauer M, Quinn CC, Wasiak S, Guipponi M et al. Endocytic protein intersectin-l regulates actin assembly via Cdc42 and N-WASP. Nat Cell Biol 2001; 3: 927–932.

    Article  CAS  Google Scholar 

  18. Snyder JT, Worthylake DK, Rossman KL, Betts L, Pruitt WM, Siderovski DP et al. Structural basis for the selective activation of Rho GTPases by Dbl exchange factors. Nat Struct Biol 2002; 9: 468–475.

    Article  CAS  Google Scholar 

  19. Adams A, Thorn JM, Yamabhai M, Kay BK, O’Bryan JP . Intersectin, an adaptor protein involved in clathrin-mediated endocytosis, activates mitogenic signaling pathways. J Biol Chem 2000; 275: 27414–27420.

    CAS  PubMed  Google Scholar 

  20. Wang JB, Wu WJ, Cerione RA . Cdc42 and Ras cooperate to mediate cellular transformation by intersectin-L. J Biol Chem 2005; 280: 22883–22891.

    Article  CAS  Google Scholar 

  21. Mohney RP, Das M, Bivona TG, Hanes R, Adams AG, Philips MR et al. Intersectin activates Ras but stimulates transcription through an independent pathway involving JNK. J Biol Chem 2003; 278: 47038–47045.

    Article  CAS  Google Scholar 

  22. Yu Y, Chu PY, Bowser DN, Keating DJ, Dubach D, Harper I et al. Mice deficient for the chromosome 21 ortholog Itsn1 exhibit vesicle-trafficking abnormalities. Hum Mol Genet 2008; 17: 3281–3290.

    Article  CAS  Google Scholar 

  23. Predescu SA, Predescu DN, Knezevic I, Klein IK, Malik AB . Intersectin-1s regulates the mitochondrial apoptotic pathway in endothelial cells. J Biol Chem 2007; 282: 17166–17178.

    Article  CAS  Google Scholar 

  24. Sengar AS, Wang W, Bishay J, Cohen S, Egan SE . The EH and SH3 domain Ese proteins regulate endocytosis by linking to dynamin and Eps15. EMBO J 1999; 18: 1159–1171.

    Article  CAS  Google Scholar 

  25. Simpson F, Hussain NK, Qualmann B, Kelly RB, Kay BK, McPherson PS et al. SH3-domain-containing proteins function at distinct steps in clathrin-coated vesicle formation. Nat Cell Biol 1999; 1: 119–124.

    Article  CAS  Google Scholar 

  26. Floyd S, De Camilli P . Endocytosis proteins and cancer: a potential link? Trends Cell Biol 1998; 8: 299–301.

    Article  CAS  Google Scholar 

  27. Sorkin A, von Zastrow M . Endocytosis and signalling: intertwining molecular networks. Nat Rev Mol Cell Biol 2009; 10: 609–622.

    Article  CAS  Google Scholar 

  28. Asgharzadeh S, Pique-Regi R, Sposto R, Wang H, Yang Y, Shimada H et al. Prognostic significance of gene expression profiles of metastatic neuroblastomas lacking MYCN gene amplification. J Natl Cancer Inst 2006; 98: 1193–1203.

    Article  CAS  Google Scholar 

  29. Wei JS, Greer BT, Westermann F, Steinberg SM, Son CG, Chen QR et al. Prediction of clinical outcome using gene expression profiling and artificial neural networks for patients with neuroblastoma. Cancer Res 2004; 64: 6883–6891.

    Article  CAS  Google Scholar 

  30. Ma Y, Wang B, Li W, Liu X, Wang J, Ding T et al. Intersectin1-s is involved in migration and invasion of human glioma cells. J Neurosci Res 2011; 89: 1079–1090.

    Article  CAS  Google Scholar 

  31. Ma Y, Wang B, Li W, Ying G, Fu L, Niu R et al. Reduction of intersectin1-s induced apoptosis of human glioblastoma cells. Brain Res 2010; 1351: 222–228.

    Article  CAS  Google Scholar 

  32. Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, Bilanges B . The emerging mechanisms of isoform-specific PI3K signalling. Nat Rev Mol Cell Biol 2010; 11: 329–341.

    Article  CAS  Google Scholar 

  33. Koutros S, Schumacher FR, Hayes RB, Ma J, Huang WY, Albanes D et al. Pooled analysis of phosphatidylinositol 3-kinase pathway variants and risk of prostate cancer. Cancer Res 2010; 70: 2389–2396.

    Article  CAS  Google Scholar 

  34. Momboisse F, Ory S, Ceridono M, Calco V, Vitale N, Bader MF et al. The Rho guanine nucleotide exchange factors intersectin 1L and beta-pix control calcium-regulated exocytosis in neuroendocrine PC12 cells. Cell Mol Neurobiol 2010; 30: 1327–1333.

    Article  CAS  Google Scholar 

  35. Malacombe M, Ceridono M, Calco V, Chasserot-Golaz S, McPherson PS, Bader MF et al. Intersectin-1L nucleotide exchange factor regulates secretory granule exocytosis by activating Cdc42. EMBO J 2006; 25: 3494–3503.

    Article  CAS  Google Scholar 

  36. Eggert A, Grotzer MA, Ikegaki N, Zhao H, Cnaan A, Brodeur GM et al. Expression of the neurotrophin receptor TrkB is associated with unfavorable outcome in Wilms’ tumor. J Clin Oncol 2001; 19: 689–696.

    Article  CAS  Google Scholar 

  37. Eggert A, Ikegaki N, Liu XG, Brodeur GM . Prognostic and biological role of neurotrophin-receptor TrkA and TrkB in neuroblastoma. Klin Padiatr 2000; 212: 200–205.

    Article  CAS  Google Scholar 

  38. Janoueix-Lerosey I, Lequin D, Brugieres L, Ribeiro A, de Pontual L, Combaret V et al. Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature (London) 2008; 455: 967–970.

    Article  CAS  Google Scholar 

  39. Chen Y, Takita J, Choi YL, Kato M, Ohira M, Sanada M et al. Oncogenic mutations of ALK kinase in neuroblastoma. Nature (London) 2008; 455: 971–974.

    Article  CAS  Google Scholar 

  40. George RE, Sanda T, Hanna M, Frohling S, Luther II W, Zhang J et al. Activating mutations in ALK provide a therapeutic target in neuroblastoma. Nature (London) 2008; 455: 975–978.

    Article  CAS  Google Scholar 

  41. Arcaro A, Zvelebil MJ, Wallasch C, Ullrich A, Waterfield MD, Domin J . Class II phosphoinositide 3-kinases are downstream targets of activated polypeptide growth factor receptors. Mol Cell Biol 2000; 20: 3817–3830.

    Article  CAS  Google Scholar 

  42. Martin NP, Mohney RP, Dunn S, Das M, Scappini E, O’Bryan JP . Intersectin regulates epidermal growth factor receptor endocytosis, ubiquitylation, and signaling. Mol Pharmacol 2006; 70: 1643–1653.

    Article  CAS  Google Scholar 

  43. Clark G, Cox AD, Graham SM, Der CJ . Biological assays for Ras transformation. Methods Enzymol 1995; 255: 395–412.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Naohiko Ikegaki and Bernard Weissman for providing various neuroblastoma cell lines, and Drs Michael Hogarty and Wendy London and the Children's Oncology Group ANBL00B1 Neuroblastoma Biology Studies for providing the primary neuroblastoma tumor samples for analysis. We also thank Dr Ikegaki for providing advice on the xenograft assay, Dr Javed Khan for his helpful discussions regarding the Oncogenomics database, and members of the O’Bryan lab for comments on the manuscript. These studies were supported by grants to JPO from the National Institutes of Health (HL090651), Department of Defense (PR080428), the Foundation Jerome Lejeune, and the St Baldrick's Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J P O'Bryan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russo, A., O'Bryan, J. Intersectin 1 is required for neuroblastoma tumorigenesis. Oncogene 31, 4828–4834 (2012). https://doi.org/10.1038/onc.2011.643

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.643

Keywords

This article is cited by

Search

Quick links