Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chk1 is dispensable for G2 arrest in response to sustained DNA damage when the ATM/p53/p21 pathway is functional

Abstract

In the presence of sustained DNA damage occurring in S-phase or G2, normal cells arrest before mitosis and eventually become senescent. The checkpoint kinases Chk1/Chk2 and the CDK inhibitor p21 are known to have important complementary roles in this process, in G2 arrest and cell cycle exit, respectively. However, additional checkpoint roles have been reported for these regulators and it is not clear to what extent their functions are redundant. Here we compared the respective roles of Chk1, Chk2 and p21 in DNA damage-induced G2 arrest in normal human fibroblasts, normal epithelial cells and frequently used p53 proficient cancer cells. We show that in normal cells, Chk1, but not Chk2, is involved in G2 arrest whereas neither are essential. In contrast, p21 is required. However, Chk1, but not Chk2, becomes necessary for arrest in U2OS osteosarcoma cells. We find that their ATM/p53/p21 response in G2 phase is defective, like in other cancer cells with wild-type p53, and conclude that cross-talk between the Chk1 and p21 pathways allows them to switch dependency for G2 arrest onto Chk1. Using the specific ATM inhibitor KU-55933 we confirm the essential role of ATM in the induction of p21 for G2 arrest of normal cells. Efficient p21 induction is required for nuclear sequestration of inactive cyclin B1-Cdk1 complexes preceding irreversible cell cycle exit in G2. Our results demonstrate that p21 is able to fulfill the Chk1 functions in G2 arrest under continuous genotoxic stress, which has important implications for cancer chemotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Ahn J, Urist M, Prives C . (2003). Questioning the role of checkpoint kinase 2 in the p53 DNA damage response. J Biol Chem 278: 20480–20489.

    Article  CAS  PubMed  Google Scholar 

  • Andreassen PR, Lacroix FB, Lohez OD, Margolis RL . (2001). Neither p21(WAF1) Nor 14-3-3sigma prevents G(2) progression to mitotic catastrophe in human colon carcinoma cells after DNA damage, but p21(WAF1) induces stable G(1) arrest in resulting tetraploid cells. Cancer Res 61: 7660–7668.

    CAS  PubMed  Google Scholar 

  • Arlander SJ, Greene BT, Innes CL, Paules RS . (2008). DNA protein kinase-dependent G2 checkpoint revealed following knockdown of ataxia-telangiectasia mutated in human mammary epithelial cells. Cancer Res 68: 89–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartek J, Bartkova J, Lukas J . (2007). DNA damage signalling guards against activated oncogenes and tumour progression. Oncogene 26: 7773–7779.

    Article  CAS  PubMed  Google Scholar 

  • Bartek J, Lukas J . (2003). Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 3: 421–429.

    Article  CAS  PubMed  Google Scholar 

  • Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K et al. (2005). DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434: 864–870.

    Article  CAS  PubMed  Google Scholar 

  • Baus F, Gire V, Fisher D, Piette J, Dulić V . (2003). Permanent cell cycle exit in G2 phase after DNA damage in normal human fibroblasts. EMBO J 22: 3992–4002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berkovich E, Monnat Jr RJ, Kastan MB . (2007). Roles of ATM and NBS1 in chromatin structure modulation and DNA double-strand break repair. Nat Cell Biol 9: 683–690.

    Article  CAS  PubMed  Google Scholar 

  • Bruno T, De Nicola F, Iezzi S, Lecis D, D'Angelo C, Di Padova M et al. (2006). Che-1 affects cell growth by interfering with the recruitment of HDAC1 by Rb. Cancer Cell 10: 473–486.

    Article  CAS  PubMed  Google Scholar 

  • Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP et al. (1998). Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282: 1497–1501.

    Article  CAS  PubMed  Google Scholar 

  • Chan TA, Hermeking H, Lengauer C, Kinzler KW, Vogelstein B . (1999). 14-3-3Sigma is required to prevent mitotic catastrophe after DNA damage. Nature 401: 616–620.

    Article  CAS  PubMed  Google Scholar 

  • Chan TA, Hwang PM, Hermeking H, Kinzler KW, Vogelstein B . (2000). Cooperative effects of genes controlling the G(2)/M checkpoint. Genes Dev 14: 1584–1588.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Charrier-Savournin FB, Chateau MT, Gire V, Sedivy J, Piette J, Dulić V . (2004). p21-Mediated nuclear retention of cyclin B1-Cdk1 in response to genotoxic stress. Mol Biol Cell 15: 3965–3976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Poon RY . (2008). The multiple checkpoint functions of CHK1 and CHK2 in maintenance of genome stability. Front Biosci 13: 5016–5029.

    CAS  PubMed  Google Scholar 

  • Dai Y, Grant S . (2010). New insights into checkpoint kinase 1 in the DNA damage response signaling network. Clin Cancer Res 16: 376–383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davoli T, Denchi EL, de Lange T . (2010). Persistent telomere damage induces bypass of mitosis and tetraploidy. Cell 141: 81–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deckbar D, Birraux J, Krempler A, Tchouandong L, Beucher A, Walker S et al. (2007). Chromosome breakage after G2 checkpoint release. J Cell Biol 176: 749–755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C et al. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92: 9363–9367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Downes CS, Clarke DJ, Mullinger AM, Gimenez-Abian JF, Creighton AM, Johnson RT . (1994). A topoisomerase II-dependent G2 cycle checkpoint in mammalian cells. Nature 372: 467–470.

    Article  CAS  PubMed  Google Scholar 

  • Dulić V, Stein GH, Far DF, Reed SI . (1998). Nuclear accumulation of p21Cip1 at the onset of mitosis: a role at the G2/M-phase transition. Mol Cell Biol 18: 546–557.

    Article  PubMed  PubMed Central  Google Scholar 

  • Flatt PM, Tang LJ, Scatena CD, Szak ST, Pietenpol JA . (2000). p53 regulation of G(2) checkpoint is retinoblastoma protein dependent. Mol Cell Biol 20: 4210–4223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foijer F, Wolthuis RM, Doodeman V, Medema RH, te Riele H . (2005). Mitogen requirement for cell cycle progression in the absence of pocket protein activity. Cancer Cell 8: 455–466.

    Article  CAS  PubMed  Google Scholar 

  • Gavet O, Pines J . (2010). Activation of cyclin B1-Cdk1 synchronizes events in the nucleus and the cytoplasm at mitosis. J Cell Biol 189: 247–259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillis LD, Leidal AM, Hill R, Lee PW . (2009). p21Cip1/WAF1 mediates cyclin B1 degradation in response to DNA damage. Cell Cycle 8: 253–256.

    Article  CAS  PubMed  Google Scholar 

  • Gire V, Roux P, Wynford-Thomas D, Brondello JM, Dulić V . (2004). DNA damage checkpoint kinase Chk2 triggers replicative senescence. EMBO J 23: 2554–2563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A, Liloglou T et al. (2005). Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434: 907–913.

    Article  CAS  PubMed  Google Scholar 

  • Gottifredi V, Karni-Schmidt O, Shieh SS, Prives C . (2001). p53 down-regulates CHK1 through p21 and the retinoblastoma protein. Mol Cell Biol 21: 1066–1076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graves PR, Yu L, Schwarz JK, Gales J, Sausville EA, O'Connor PM et al. (2000). The Chk1 protein kinase and the Cdc25C regulatory pathways are targets of the anticancer agent UCN-01. J Biol Chem 275: 5600–5605.

    Article  CAS  PubMed  Google Scholar 

  • Harper JW, Elledge SJ . (2007). The DNA damage response: ten years after. Mol Cell 28: 739–745.

    Article  CAS  PubMed  Google Scholar 

  • Hermeking H, Lengauer C, Polyak K, He TC, Zhang L, Thiagalingam S et al. (1997). 14-3-3 sigma is a p53-regulated inhibitor of G2/M progression. Mol Cell 1: 3–11.

    Article  CAS  PubMed  Google Scholar 

  • Hickson I, Zhao Y, Richardson CJ, Green SJ, Martin NM, Orr AI et al. (2004). Identification and characterization of a novel and specific inhibitor of the ataxia-telangiectasia mutated kinase ATM. Cancer Res 64: 9152–9159.

    Article  CAS  PubMed  Google Scholar 

  • Hoeijmakers JH . (2001). Genome maintenance mechanisms for preventing cancer. Nature 411: 366–374.

    Article  CAS  PubMed  Google Scholar 

  • Innocente SA, Abrahamson JL, Cogswell JP, Lee JM . (1999). p53 regulates a G2 checkpoint through cyclin B1. Proc Natl Acad Sci USA 96: 2147–2152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue Y, Kitagawa M, Taya Y . (2007). Phosphorylation of pRB at Ser612 by Chk1/2 leads to a complex between pRB and E2F-1 after DNA damage. EMBO J 26: 2083–2093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson MW, Agarwal MK, Yang J, Bruss P, Uchiumi T, Agarwal ML et al. (2005). p130/p107/p105Rb-dependent transcriptional repression during DNA-damage-induced cell-cycle exit at G2. J Cell Sci 118: 1821–1832.

    Article  CAS  PubMed  Google Scholar 

  • Jallepalli PV, Lengauer C, Vogelstein B, Bunz F . (2003). The Chk2 tumor suppressor is not required for p53 responses in human cancer cells. J Biol Chem 278: 20475–20479.

    Article  CAS  PubMed  Google Scholar 

  • Jin J, Ang XL, Ye X, Livingstone M, Harper JW . (2008). Differential roles for checkpoint kinases in DNA damage-dependent degradation of the Cdc25A protein phosphatase. J Biol Chem 283: 19322–19328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jurvansuu J, Fragkos M, Ingemarsdotter C, Beard P . (2007). Chk1 instability is coupled to mitotic cell death of p53-deficient cells in response to virus-induced DNA damage signaling. J Mol Biol 372: 397–406.

    Article  CAS  PubMed  Google Scholar 

  • Kops GJ, Weaver BA, Cleveland DW . (2005). On the road to cancer: aneuploidy and the mitotic checkpoint. Nat Rev Cancer 5: 773–785.

    Article  CAS  PubMed  Google Scholar 

  • Lavin MF . (2008). Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nat Rev Mol Cell Biol 9: 759–769.

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Kim JA, Barbier V, Fotedar A, Fotedar R . (2009). DNA damage triggers p21WAF1-dependent Emi1 down-regulation that maintains G2 arrest. Mol Biol Cell 20: 1891–1902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levedakou EN, Kaufmann WK, Alcorta DA, Galloway DA, Paules RS . (1995). p21CIP1 is not required for the early G2 checkpoint response to ionizing radiation. Cancer Res 55: 2500–2502.

    CAS  PubMed  Google Scholar 

  • Lindqvist A, Kallstrom H, Lundgren A, Barsoum E, Rosenthal CK . (2005). Cdc25B cooperates with Cdc25A to induce mitosis but has a unique role in activating cyclin B1-Cdk1 at the centrosome. J Cell Biol 171: 35–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lobrich M, Jeggo PA . (2007). The impact of a negligent G2/M checkpoint on genomic instability and cancer induction. Nat Rev Cancer 7: 861–869.

    Article  PubMed  Google Scholar 

  • Meek DW, Anderson CW . (2009). Posttranslational modification of p53: cooperative integrators of function. Cold Spring Harb Perspect Biol 1: a000950.

    Article  PubMed  PubMed Central  Google Scholar 

  • Meng S, Arbit T, Veeriah S, Mellinghoff IK, Fang F, Vivanco I et al. (2009). 14-3-3sigma and p21 synergize to determine DNA damage response following Chk2 inhibition. Cell Cycle 8: 2238–2246.

    Article  CAS  PubMed  Google Scholar 

  • Merry C, Fu K, Wang J, Yeh IJ, Zhang Y . (2010). Targeting the checkpoint kinase Chk1 in cancer therapy. Cell Cycle 9: 279–283.

    Article  CAS  PubMed  Google Scholar 

  • Narita M, Nunez S, Heard E, Lin AW, Hearn SA, Spector DL et al. (2003). Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113: 703–716.

    Article  CAS  PubMed  Google Scholar 

  • Palmero EI, Achatz MI, Ashton-Prolla P, Olivier M, Hainaut P . (2010). Tumor protein 53 mutations and inherited cancer: beyond Li-Fraumeni syndrome. Curr Opin Oncol 22: 64–69.

    Article  CAS  PubMed  Google Scholar 

  • Reinhardt HC, Aslanian AS, Lees JA, Yaffe MB . (2007). p53-deficient cells rely on ATM- and ATR-mediated checkpoint signaling through the p38MAPK/MK2 pathway for survival after DNA damage. Cancer Cell 11: 175–189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinhardt HC, Yaffe MB . (2009). Kinases that control the cell cycle in response to DNA damage: Chk1, Chk2, and MK2. Curr Opin Cell Biol 21: 245–255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shibata A, Barton O, Noon AT, Dahm K, Deckbar D, Goodarzi AA et al. (2010). Role of ATM and the damage response mediator proteins 53BP1 and MDC1 in the maintenance of G(2)/M checkpoint arrest. Mol Cell Biol 30: 3371–3383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiloh Y . (2003). ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 3: 155–168.

    Article  CAS  PubMed  Google Scholar 

  • Shimada M, Niida H, Zineldeen DH, Tagami H, Tanaka M, Saito H et al. (2008). Chk1 is a histone H3 threonine 11 kinase that regulates DNA damage-induced transcriptional repression. Cell 132: 221–232.

    Article  CAS  PubMed  Google Scholar 

  • Smits VA, Klompmaker R, Vallenius T, Rijksen G, Makela TP, Medema RH . (2000). p21 inhibits thr161 phosphorylation of cdc2 to enforce the G2 DNA damage checkpoint. J Biol Chem 275: 30638–30643.

    Article  CAS  PubMed  Google Scholar 

  • Stampfer M, Hallowes RC, Hackett AJ . (1980). Growth of normal human mammary cells in culture. n vitro 16: 415–425.

    Article  CAS  Google Scholar 

  • Syljuasen RG, Jensen S, Bartek J, Lukas J . (2006). Adaptation to the ionizing radiation-induced G2 checkpoint occurs in human cells and depends on checkpoint kinase 1 and Polo-like kinase 1 kinases. Cancer Res 66: 10253–10257.

    Article  CAS  PubMed  Google Scholar 

  • Takemura H, Rao VA, Sordet O, Furuta T, Miao ZH, Meng L et al. (2006). Defective Mre11-dependent activation of Chk2 by ataxia telangiectasia mutated in colorectal carcinoma cells in response to replication-dependent DNA double strand breaks. J Biol Chem 281: 30814–30823.

    Article  CAS  PubMed  Google Scholar 

  • Taylor WR, Stark GR . (2001). Regulation of the G2/M transition by p53. Oncogene 20: 1803–1815.

    Article  CAS  PubMed  Google Scholar 

  • Toettcher JE, Loewer A, Ostheimer GJ, Yaffe MB, Tidor B, Lahav G . (2009). Distinct mechanisms act in concert to mediate cell cycle arrest. Proc Natl Acad Sci USA 106: 785–790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomimatsu N, Mukherjee B, Burma S . (2009). Distinct roles of ATR and DNA-PKcs in triggering DNA damage responses in ATM-deficient cells. EMBO Rep 10: 629–635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Vugt MA, Gardino AK, Linding R, Ostheimer GJ, Reinhardt HC, Ong SE et al. (2010). A mitotic phosphorylation feedback network connects Cdk1, Plk1, 53BP1, and Chk2 to inactivate the G(2)/M DNA damage checkpoint. PLoS Biol 8: e1000287.

    Article  PubMed  PubMed Central  Google Scholar 

  • van Vugt MA, Yaffe MB . (2010). Cell cycle re-entry mechanisms after DNA damage checkpoints: giving it some gas to shut off the breaks!. Cell Cycle 9: 2097–2101.

    Article  CAS  PubMed  Google Scholar 

  • Zhang WH, Poh A, Fanous AA, Eastman A . (2008). DNA damage-induced S phase arrest in human breast cancer depends on Chk1, but G(2) arrest can occur independently of Chk1, Chk2 or MAPKAPK2. Cell Cycle 7: 1668–1677.

    Article  CAS  PubMed  Google Scholar 

  • Zhang YW, Otterness DM, Chiang GG, Xie W, Liu YC, Mercurio F et al. (2005). Genotoxic stress targets human Chk1 for degradation by the ubiquitin-proteasome pathway. Mol Cell 19: 607–618.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants of ARC (grant N° 3631 to JP and N°3793 to VD) the Cancéropole du Grand Sud Ouest and the Ministère de l’Education Nationale et de la Recherche (MENR, EB). The team (GL, VD and DF) is ‘Equipe labellisé’ by the Ligue Nationale Contre le Cancer (LNCC, N° EL2010.LNCC/DF). GL was recipient of a PhD fellowship from LNCC. We are grateful to KUDOS Pharmaceuticals for gift KU-55933, Dr AM Creighton for gift ICRF-193, Dr D Galloway (Seattle, USA) for the E6 retroviral vector and Dr A Constantinou for DNA-PKcs-specific antibodies. We thank Dr D Fraillery for helping us in analysis of HeLa and U2OS cells, Drs V Gire and J Loncarek for the retroviral transduction of the HMEC-derived cell lines, Drs E Julien, C Sardet, A Camasses, P Coopman and N Taylor for critical reading of the manuscript and Dr A Constantinou for encouragement. We acknowledge the Montpellier RIO imaging facility (Head Dr P Travo) for their help. Finally, we thank the reviewers for insightful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J Piette or V Dulić.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lossaint, G., Besnard, E., Fisher, D. et al. Chk1 is dispensable for G2 arrest in response to sustained DNA damage when the ATM/p53/p21 pathway is functional. Oncogene 30, 4261–4274 (2011). https://doi.org/10.1038/onc.2011.135

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.135

Keywords

This article is cited by

Search

Quick links