Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Methylation by protein arginine methyltransferase 1 increases stability of Axin, a negative regulator of Wnt signaling

Abstract

Axin, a negative regulator of Wnt signaling, is a key scaffold protein for the β-catenin destruction complex. It has been previously shown that multiple post-translational modification enzymes regulate the level of Axin. Here, we provide evidence that protein arginine methyltransferase 1 (PRMT1) directly interacts with and methylates the 378th arginine residue of Axin both in vitro and in vivo. We found that the transient expression of PRMT1 led to an increased level of Axin and that knockdown of endogenous PRMT1 by short hairpin RNA reduced the level of Axin. These results suggest that methylation by PRMT1 enhanced the stability of Axin. Methylation of Axin by PRMT1 also seemingly enhanced the interaction between Axin and glycogen synthase kinase 3β, leading to decreased ubiquitination of Axin. Consistent with the role of PRMT1 in the regulation of Axin, knockdown of PRMT1 enhanced the level of cytoplasmic β-catenin as well as β-catenin-dependent transcription activity. In summary, we show that the methylation of Axin occurred in vivo and controlled the stability of Axin. Therefore, methylation of Axin by PRMT1 may serve as a finely tuned regulation mechanism for Wnt/β-catenin signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Bedford MT . (2007). Arginine methylation at a glance. J Cell Sci 120: 4243–4246.

    Article  CAS  PubMed  Google Scholar 

  • Bedford MT, Clarke SG . (2009). Protein arginine methylation in mammals: who, what, and why. Mol Cell 33: 1–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bedford MT, Frankel A, Yaffe MB, Clarke S, Leder P, Richard S . (2000). Arginine methylation inhibits the binding of proline-rich ligands to Src homology 3, but not WW, domains. J Biol Chem 275: 16030–16036.

    Article  CAS  PubMed  Google Scholar 

  • Bedford MT, Richard S . (2005). Arginine methylation an emerging regulator of protein function. Mol Cell 18: 263–272.

    CAS  PubMed  Google Scholar 

  • Bienz M, Clevers H . (2000). Linking colorectal cancer to Wnt signaling. Cell 103: 311–320.

    Article  CAS  PubMed  Google Scholar 

  • Boisvert FM, Chenard CA, Richard S . (2005). Protein interfaces in signaling regulated by arginine methylation. Sci STKE 2005: re2.

    PubMed  Google Scholar 

  • Cadigan KM, Nusse R . (1997). Wnt signaling: a common theme in animal development. Genes Dev 11: 3286–3305.

    Article  CAS  PubMed  Google Scholar 

  • Cong F, Schweizer L, Varmus H . (2004). Wnt signals across the plasma membrane to activate the beta-catenin pathway by forming oligomers containing its receptors, Frizzled and LRP. Development 131: 5103–5115.

    Article  CAS  PubMed  Google Scholar 

  • Dajani R, Fraser E, Roe SM, Yeo M, Good VM, Thompson V et al. (2003). Structural basis for recruitment of glycogen synthase kinase 3beta to the axin-APC scaffold complex. EMBO J 22: 494–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davidson G, Wu W, Shen J, Bilic J, Fenger U, Stannek P et al. (2005). Casein kinase 1 gamma couples Wnt receptor activation to cytoplasmic signal transduction. Nature 438: 867–872.

    Article  CAS  PubMed  Google Scholar 

  • Fagotto F, Jho E, Zeng L, Kurth T, Joos T, Kaufmann C et al. (1999). Domains of axin involved in protein-protein interactions, Wnt pathway inhibition, and intracellular localization. J Cell Biol 145: 741–756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goulet I, Gauvin G, Boisvenue S, Cote J . (2007). Alternative splicing yields protein arginine methyltransferase 1 isoforms with distinct activity, substrate specificity, and subcellular localization. J Biol Chem 282: 33009–33021.

    Article  CAS  PubMed  Google Scholar 

  • Gupta P, Ho PC, Huq MD, Khan AA, Tsai NP, Wei LN . (2008). PKCepsilon stimulated arginine methylation of RIP140 for its nuclear-cytoplasmic export in adipocyte differentiation. PLoS One 3: e2658.

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang SM, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud GA et al. (2009). Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 461: 614–620.

    Article  CAS  PubMed  Google Scholar 

  • Jernigan KK, Cselenyi CS, Thorne CA, Hanson AJ, Tahinci E, Hajicek N et al. (2010). Gbetagamma activates GSK3 to promote LRP6-mediated beta-catenin transcriptional activity. Sci Signal 3: ra37.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jho E, Lomvardas S, Costantini F . (1999). A GSK3beta phosphorylation site in axin modulates interaction with beta-catenin and Tcf-mediated gene expression. Biochem Biophys Res Commun 266: 28–35.

    Article  CAS  PubMed  Google Scholar 

  • Jung H, Kim HJ, Lee SK, Kim R, Kopachik W, Han JK et al. (2009). Negative feedback regulation of Wnt signaling by Gbetagamma-mediated reduction of Dishevelled. Exp Mol Med 41: 695–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim MJ, Chia IV, Costantini F . (2008). SUMOylation target sites at the C terminus protect Axin from ubiquitination and confer protein stability. FASEB J 22: 3785–3794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Jho EH . (2010). The protein stability of Axin, a negative regulator of Wnt signaling, is regulated by Smad ubiquitination regulatory factor 2 (Smurf2). J Biol Chem 285: 36420–36426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimelman D, Xu W . (2006). beta-Catenin destruction complex: insights and questions from a structural perspective. Oncogene 25: 7482–7491.

    Article  CAS  PubMed  Google Scholar 

  • Latres E, Chiaur DS, Pagano M . (1999). The human F box protein beta-Trcp associates with the Cul1/Skp1 complex and regulates the stability of beta-catenin. Oncogene 18: 849–854.

    Article  CAS  PubMed  Google Scholar 

  • Lee E, Salic A, Kruger R, Heinrich R, Kirschner MW . (2003). The roles of APC and Axin derived from experimental and theoretical analysis of the Wnt pathway. PLoS Biol 1: E10.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu C, Li Y, Semenov M, Han C, Baeg GH, Tan Y et al. (2002). Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108: 837–847.

    Article  CAS  PubMed  Google Scholar 

  • Logan CY, Nusse R . (2004). The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20: 781–810.

    Article  CAS  PubMed  Google Scholar 

  • Luo W, Lin SC . (2004). Axin: a master scaffold for multiple signaling pathways. Neurosignals 13: 99–113.

    Article  CAS  PubMed  Google Scholar 

  • Luo W, Peterson A, Garcia BA, Coombs G, Kofahl B, Heinrich R et al. (2007). Protein phosphatase 1 regulates assembly and function of the beta-catenin degradation complex. EMBO J 26: 1511–1521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyu J, Yamamoto V, Lu W . (2008). Cleavage of the Wnt receptor Ryk regulates neuronal differentiation during cortical neurogenesis. Dev Cell 15: 773–780.

    Article  CAS  PubMed  Google Scholar 

  • MacDonald BT, Tamai K, He X . (2009). Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17: 9–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McBride AE, Weiss VH, Kim HK, Hogle JM, Silver PA . (2000). Analysis of the yeast arginine methyltransferase Hmt1p/Rmt1p and its in vivo function. Cofactor binding and substrate interactions. J Biol Chem 275: 3128–3136.

    Article  CAS  PubMed  Google Scholar 

  • McBride AE, Silver PA . (2001). State of the arg: protein methylation at arginine comes of age. Cell 106: 5–8.

    Article  CAS  PubMed  Google Scholar 

  • Moon RT, Brown JD, Torres M . (1997). WNTs modulate cell fate and behavior during vertebrate development. Trends Genet 13: 157–162.

    Article  CAS  PubMed  Google Scholar 

  • Mowen KA, Tang J, Zhu W, Schurter BT, Shuai K, Herschman HR et al. (2001). Arginine methylation of STAT1 modulates IFNalpha/beta-induced transcription. Cell 104: 731–741.

    Article  CAS  PubMed  Google Scholar 

  • Nicholson TB, Chen T, Richard S . (2009). The physiological and pathophysiological role of PRMT1-mediated protein arginine methylation. Pharmacol Res 60: 466–474.

    Article  CAS  PubMed  Google Scholar 

  • Pawlak MR, Scherer CA, Chen J, Roshon MJ, Ruley HE . (2000). Arginine N-methyltransferase 1 is required for early postimplantation mouse development, but cells deficient in the enzyme are viable. Mol Cell Biol 20: 4859–4869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polakis P . (2000). Wnt signaling and cancer. Genes Dev 14: 1837–1851.

    CAS  PubMed  Google Scholar 

  • Rui HL, Fan E, Zhou HM, Xu Z, Zhang Y, Lin SC . (2002). SUMO-1 modification of the C-terminal KVEKVD of Axin is required for JNK activation but has no effect on Wnt signaling. J Biol Chem 277: 42981–42986.

    Article  CAS  PubMed  Google Scholar 

  • Salahshor S, Woodgett JR . (2005). The links between axin and carcinogenesis. J Clin Pathol 58: 225–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salic A, Lee E, Mayer L, Kirschner MW . (2000). Control of beta-catenin stability: reconstitution of the cytoplasmic steps of the wnt pathway in Xenopus egg extracts. Mol Cell 5: 523–532.

    Article  CAS  PubMed  Google Scholar 

  • Satoh S, Daigo Y, Furukawa Y, Kato T, Miwa N, Nishiwaki T et al. (2000). AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1. Nat Genet 24: 245–250.

    Article  CAS  PubMed  Google Scholar 

  • Shimizu Y, Ikeda S, Fujimori M, Kodama S, Nakahara M, Okajima M et al. (2002). Frequent alterations in the Wnt signaling pathway in colorectal cancer with microsatellite instability. Genes Chromosomes Cancer 33: 73–81.

    Article  CAS  PubMed  Google Scholar 

  • Tang J, Frankel A, Cook RJ, Kim S, Paik WK, Williams KR et al. (2000). PRMT1 is the predominant type I protein arginine methyltransferase in mammalian cells. J Biol Chem 275: 7723–7730.

    Article  CAS  PubMed  Google Scholar 

  • Teyssier C, Ma H, Emter R, Kralli A, Stallcup MR . (2005). Activation of nuclear receptor coactivator PGC-1alpha by arginine methylation. Genes Dev 19: 1466–1473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tolwinski NS, Wieschaus E . (2004). Rethinking WNT signaling. Trends Genet 20: 177–181.

    Article  CAS  PubMed  Google Scholar 

  • Willert K, Jones KA . (2006). Wnt signaling: is the party in the nucleus? Genes Dev 20: 1394–1404.

    Article  CAS  PubMed  Google Scholar 

  • Willert K, Shibamoto S, Nusse R . (1999). Wnt-induced dephosphorylation of axin releases beta-catenin from the axin complex. Genes Dev 13: 1768–1773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winston JT, Strack P, Beer-Romero P, Chu CY, Elledge SJ, Harper JW . (1999). The SCFbeta-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IkappaBalpha and beta-catenin and stimulates IkappaBalpha ubiquitination in vitro. Genes Dev 13: 270–283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto H, Kishida S, Kishida M, Ikeda S, Takada S, Kikuchi A . (1999). Phosphorylation of axin, a Wnt signal negative regulator, by glycogen synthase kinase-3beta regulates its stability. J Biol Chem 274: 10681–10684.

    Article  CAS  PubMed  Google Scholar 

  • Yu Z, Chen T, Hebert J, Li E, Richard S . (2009). A mouse PRMT1 null allele defines an essential role for arginine methylation in genome maintenance and cell proliferation. Mol Cell Biol 29: 2982–2996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng X, Huang H, Tamai K, Zhang X, Harada Y, Yokota C et al. (2008). Initiation of Wnt signaling: control of Wnt coreceptor Lrp6 phosphorylation/activation via frizzled, dishevelled and axin functions. Development 135: 367–375.

    Article  CAS  PubMed  Google Scholar 

  • Zeng X, Tamai K, Doble B, Li S, Huang H, Habas R et al. (2005). A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature 438: 873–877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Jankovic V, Gural A, Huang G, Pardanani A, Menendez S et al. (2008). Methylation of RUNX1 by PRMT1 abrogates SIN3A binding and potentiates its transcriptional activity. Genes Dev 22: 640–653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Korea Research Foundation (C00339) and the National R&D Program for Cancer Control, Ministry for Health and Welfare, Republic of Korea (1020240) to E Jho B Cha, W Kim and B Hwang were supported by the Brain Korea 21 program. B Cha and W Kim were recipients of the Seoul Science Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E-h Jho.

Ethics declarations

Competing interests

Our work is original research, has not been previously published and has not been submitted for publication elsewhere while under consideration. We declare that there is no competing financial interest in relation to our work described in the manuscript.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cha, B., Kim, W., Kim, Y. et al. Methylation by protein arginine methyltransferase 1 increases stability of Axin, a negative regulator of Wnt signaling. Oncogene 30, 2379–2389 (2011). https://doi.org/10.1038/onc.2010.610

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.610

Keywords

This article is cited by

Search

Quick links