Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Transgenic expression of human cathepsin B promotes progression and metastasis of polyoma-middle-T-induced breast cancer in mice

Abstract

Elevated expression of the cysteine protease cathepsin B (CTSB) has been correlated with a poor prognosis for cancer patients. In order to model high CTSB expression in mammary cancer, transgenic mice expressing human CTSB were crossed with transgenic polyoma virus middle T oncogene breast cancer mice (mouse mammary tumor virus-PymT), resulting in a 20-fold increase in cathepsin B activity in the tumors of double-transgenic animals. CTSB expression did not affect tumor onset, but CTSB transgenic mice showed accelerated tumor growth with significant increase in weight for end-stage tumors, as well as an overall worsening in their histopathological grades. Notably, the lung metastases in the CTSB transgenic animals were found to be both significantly larger and to occur at a significantly higher frequency. Ex vivo analysis of primary PymT tumor cells revealed no significant effects from elevated CTSB levels on tumor cell characteristics, that is, the formation of tumor cell colonies and the sprouting of invasive strands from PymT cell spheroids. However, tumors from CTSB-overexpressing mice showed increased numbers of tumor-associated B cells and mast cells. In addition, more CD31+ endothelial cells were detected in these tumors, correlating with higher levels of vascular endothelial growth factor (VEGF) being present in the tumor and serum. We conclude that elevated proteolytic CTSB activity facilitates progression and metastasis of PymT-induced mammary carcinomas, and is associated with increased immune cell infiltration, enhanced VEGF levels and the promotion of tumor angiogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Allavena P, Sica A, Solinas G, Porta C, Mantovani A . (2008). The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Crit Rev Oncol Hematol 66: 1–9.

    Article  PubMed  Google Scholar 

  • Andreu P, Johansson M, Affara NI, Pucci F, Tan T, Junankar S et al. (2010). FcRgamma activation regulates inflammation-associated squamous carcinogenesis. Cancer Cell 17: 121–134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrett AJ . (1992). Cellular proteolysis. An overview. Ann NY Acad Sci 674: 1–15.

    Article  CAS  PubMed  Google Scholar 

  • Berdowska I . (2004). Cysteine proteases as disease markers. Clin Chim Acta 342: 41–69.

    Article  CAS  PubMed  Google Scholar 

  • Brix K, Dunkhorst A, Mayer K, Jordans S . (2008). Cysteine cathepsins: cellular roadmap to different functions. Biochimie 90: 194–207.

    Article  CAS  PubMed  Google Scholar 

  • Buck MR, Karustis DG, Day NA, Honn KV, Sloane BF . (1992). Degradation of extracellular-matrix proteins by human cathepsin B from normal and tumour tissues. Biochem J 282 (Part 1): 273–278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caglic D, Kosec G, Bojic L, Reinheckel T, Turk V, Turk B . (2009). Murine and human cathepsin B exhibit similar properties: possible implications for drug discovery. Biol Chem 390: 175–179.

    Article  CAS  PubMed  Google Scholar 

  • Chang SH, Kanasaki K, Gocheva V, Blum G, Harper J, Moses MA et al. (2009). VEGF-A induces angiogenesis by perturbing the cathepsin-cysteine protease inhibitor balance in venules, causing basement membrane degradation and mother vessel formation. Cancer Res 69: 4537–4544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coulibaly S, Schwihla H, Abrahamson M, Albini A, Cerni C, Clark JL et al. (1999). Modulation of invasive properties of murine squamous carcinoma cells by heterologous expression of cathepsin B and cystatin C. Int J Cancer 83: 526–531.

    Article  CAS  PubMed  Google Scholar 

  • Coussens LM, Raymond WW, Bergers G, Laig-Webster M, Behrendtsen O, Werb Z et al. (1999). Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev 13: 1382–1397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crivellato E, Nico B, Ribatti D . (2008). Mast cells and tumour angiogenesis: new insight from experimental carcinogenesis. Cancer Lett 269: 1–6.

    Article  CAS  PubMed  Google Scholar 

  • de Visser KE, Korets LV, Coussens LM . (2005). De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell 7: 411–423.

    Article  CAS  PubMed  Google Scholar 

  • Del Rosso M, Fibbi G, Pucci M, D'Alessio S, Del Rosso A, Magnelli L et al. (2002). Multiple pathways of cell invasion are regulated by multiple families of serine proteases. Clin Exp Metastasis 19: 193–207.

    Article  CAS  PubMed  Google Scholar 

  • DeNardo DG, Coussens LM . (2007). Inflammation and breast cancer. Balancing immune response: crosstalk between adaptive and innate immune cells during breast cancer progression. Breast Cancer Res 9: 212.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dennemarker J, Lohmuller T, Mayerle J, Tacke M, Lerch MM, Coussens LM et al. (2010). Deficiency for the cysteine protease cathepsin L promotes tumor progression in mouse epidermis. Oncogene 29: 1611–1621.

    Article  CAS  PubMed  Google Scholar 

  • Du R, Lu KV, Petritsch C, Liu P, Ganss R, Passegue E et al. (2008). HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 13: 206–220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, Bauernfeind FG et al. (2010). NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464: 1357–1361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egeblad M, Werb Z . (2002). New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2: 161–174.

    Article  CAS  PubMed  Google Scholar 

  • Elston CW, Ellis IO . (1991). Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 19: 403–410.

    Article  CAS  PubMed  Google Scholar 

  • Folkman J . (2002). Role of angiogenesis in tumor growth and metastasis. Semin Oncol 29: 15–18.

    Article  CAS  PubMed  Google Scholar 

  • Gocheva V, Wang HW, Gadea BB, Shree T, Hunter KE, Garfall AL et al. (2010). IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev 24: 241–255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gocheva V, Zeng W, Ke D, Klimstra D, Reinheckel T, Peters C et al. (2006). Distinct roles for cysteine cathepsin genes in multistage tumorigenesis. Genes Dev 20: 543–556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gondi CS, Lakka SS, Yanamandra N, Olivero WC, Dinh DH, Gujrati M et al. (2004). Adenovirus-mediated expression of antisense urokinase plasminogen activator receptor and antisense cathepsin B inhibits tumor growth, invasion, and angiogenesis in gliomas. Cancer Res 64: 4069–4077.

    Article  CAS  PubMed  Google Scholar 

  • Green KA, Lund LR . (2005). ECM degrading proteases and tissue remodelling in the mammary gland. Bioessays 27: 894–903.

    Article  CAS  PubMed  Google Scholar 

  • Guy CT, Cardiff RD, Muller WJ . (1992). Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol Cell Biol 12: 954–961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T et al. (2008). The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol 9: 857–865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanahan D, Weinberg RA . (2000). The hallmarks of cancer. Cell 100: 57–70.

    CAS  PubMed  Google Scholar 

  • Hawinkels LJ, Zuidwijk K, Verspaget HW, de Jonge-Muller ES, van Duijn W, Ferreira V et al. (2008). VEGF release by MMP-9 mediated heparan sulphate cleavage induces colorectal cancer angiogenesis. Eur J Cancer 44: 1904–1913.

    Article  CAS  PubMed  Google Scholar 

  • Houseweart MK, Pennacchio LA, Vilaythong A, Peters C, Noebels JL, Myers RM . (2003). Cathepsin B but not cathepsins L or S contributes to the pathogenesis of unverricht-lundborg progressive myoclonus epilepsy (EPM1). J Neurobiol 56: 315–327.

    Article  CAS  PubMed  Google Scholar 

  • Jedeszko C, Sloane BF . (2004). Cysteine cathepsins in human cancer. Biol Chem 385: 1017–1027.

    Article  CAS  PubMed  Google Scholar 

  • Joyce JA, Pollard JW . (2009). Microenvironmental regulation of metastasis. Nat Rev Cancer 9: 239–252.

    Article  CAS  PubMed  Google Scholar 

  • Katz HR, Lobell RB . (1995). Expression and function of Fc gamma R in mouse mast cells. Int Arch Allergy Immunol 107: 76–78.

    Article  CAS  PubMed  Google Scholar 

  • Lin EY, Jones JG, Li P, Zhu L, Whitney KD, Muller WJ et al. (2003). Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. Am J Pathol 163: 2113–2126.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mai J, Finley Jr RL, Waisman DM, Sloane BF . (2000). Human procathepsin B interacts with the annexin II tetramer on the surface of tumor cells. J Biol Chem 275: 12806–12812.

    Article  CAS  PubMed  Google Scholar 

  • Mantovani A, Allavena P, Sica A, Balkwill F . (2008). Cancer-related inflammation. Nature 454: 436–444.

    Article  CAS  PubMed  Google Scholar 

  • Mohamed MM, Sloane BF . (2006). Cysteine cathepsins: multifunctional enzymes in cancer. Nat Rev Cancer 6: 764–775.

    Article  CAS  PubMed  Google Scholar 

  • Nagy JA, Dvorak AM, Dvorak HF . (2007). VEGF-A and the induction of pathological angiogenesis. Annu Rev Pathol 2: 251–275.

    Article  CAS  PubMed  Google Scholar 

  • Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R et al. (2005). Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121: 335–348.

    Article  CAS  PubMed  Google Scholar 

  • Pollard JW . (2004). Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4: 71–78.

    Article  CAS  PubMed  Google Scholar 

  • Premzl A, Zavasnik-Bergant V, Turk V, Kos J . (2003). Intracellular and extracellular cathepsin B facilitate invasion of MCF-10A neoT cells through reconstituted extracellular matrix in vitro. Exp Cell Res 283: 206–214.

    Article  CAS  PubMed  Google Scholar 

  • Rawlings ND, Barrett AJ, Bateman A . (2010). MEROPS: the peptidase database. Nucleic Acids Res 38: D227–D233.

    Article  CAS  PubMed  Google Scholar 

  • Ribatti D, Vacca A, Nico B, Crivellato E, Roncali L, Dammacco F . (2001). The role of mast cells in tumour angiogenesis. Br J Haematol 115: 514–521.

    Article  CAS  PubMed  Google Scholar 

  • Rozhin J, Sameni M, Ziegler G, Sloane BF . (1994). Pericellular pH affects distribution and secretion of cathepsin B in malignant cells. Cancer Res 54: 6517–6525.

    CAS  PubMed  Google Scholar 

  • Sevenich L, Schurigt U, Sachse K, Gajda M, Werner F, Muller S et al. (2010). Synergistic antitumor effects of combined cathepsin B and cathepsin Z deficiencies on breast cancer progression and metastasis in mice. Proc Natl Acad Sci USA 107: 2497–2502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin M, Kadowaki T, Iwata J, Kawakubo T, Yamaguchi N, Takii R et al. (2007). Association of cathepsin E with tumor growth arrest through angiogenesis inhibition and enhanced immune responses. Biol Chem 388: 1173–1181.

    Article  CAS  PubMed  Google Scholar 

  • Takai T . (2005). Fc receptors and their role in immune regulation and autoimmunity. J Clin Immunol 25: 1–18.

    Article  CAS  PubMed  Google Scholar 

  • Tummalapalli P, Spomar D, Gondi CS, Olivero WC, Gujrati M, Dinh DH et al. (2007). RNAi-mediated abrogation of cathepsin B and MMP-9 gene expression in a malignant meningioma cell line leads to decreased tumor growth, invasion and angiogenesis. Int J Oncol 31: 1039–1050.

    CAS  PubMed  Google Scholar 

  • Turk V, Kos J, Turk B . (2004). Cysteine cathepsins (proteases)—on the main stage of cancer? Cancer Cell 5: 409–410.

    Article  CAS  PubMed  Google Scholar 

  • Van Damme J, Struyf S, Opdenakker G . (2004). Chemokine-protease interactions in cancer. Semin Cancer Biol 14: 201–208.

    Article  CAS  PubMed  Google Scholar 

  • Vasiljeva O, Korovin M, Gajda M, Brodoefel H, Bojic L, Kruger A et al. (2008). Reduced tumour cell proliferation and delayed development of high-grade mammary carcinomas in cathepsin B-deficient mice. Oncogene 27: 4191–4199.

    Article  CAS  PubMed  Google Scholar 

  • Vasiljeva O, Papazoglou A, Kruger A, Brodoefel H, Korovin M, Deussing J et al. (2006). Tumor cell-derived and macrophage-derived cathepsin B promotes progression and lung metastasis of mammary cancer. Cancer Res 66: 5242–5250.

    Article  CAS  PubMed  Google Scholar 

  • Vasiljeva O, Reinheckel T, Peters C, Turk D, Turk V, Turk B . (2007). Emerging roles of cysteine cathepsins in disease and their potential as drug targets. Curr Pharm Des 13: 387–403.

    Article  CAS  PubMed  Google Scholar 

  • Werb Z, Vu TH, Rinkenberger JL, Coussens LM . (1999). Matrix-degrading proteases and angiogenesis during development and tumor formation. Apmis 107: 11–18.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The Tg(CTSB)+/0 mice were kindly provided by Dr L Pennacchio, Genomics Division, Lawrence Berkeley Laboratory. We thank Anne Schwinde, Ulrike Reif, Lisa Christiansson and Anna Heisswolf for excellent technical assistance. This work was supported by European Commission FP7 Grant 201279 (Microenvimet), Deutsche Forschungsgemeinschaft SFB 850 Project B7, and by the Excellence Initiative of the German Federal and State Governments (EXC 294 and GSC-4, Spemann Graduate School).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Reinheckel.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sevenich, L., Werner, F., Gajda, M. et al. Transgenic expression of human cathepsin B promotes progression and metastasis of polyoma-middle-T-induced breast cancer in mice. Oncogene 30, 54–64 (2011). https://doi.org/10.1038/onc.2010.387

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.387

Keywords

This article is cited by

Search

Quick links