Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Anaplastic lymphoma kinase activates the small GTPase Rap1 via the Rap1-specific GEF C3G in both neuroblastoma and PC12 cells

Abstract

Many different types of cancer originate from aberrant signaling from the anaplastic lymphoma kinase (ALK) receptor tyrosine kinase (RTK), arising through different translocation events and overexpression. Further, activating point mutations in the ALK domain have been recently reported in neuroblastoma. To characterize signaling in the context of the full-length receptor, we have examined whether ALK is able to activate Rap1 and contribute to differentiation/proliferation processes. We show that ALK activates Rap1 via the Rap1-specific guanine-nucleotide exchange factor C3G, which binds in a constitutive complex with CrkL to activated ALK. The activation of the C3G/Rap1 pathway results in neurite outgrowth of PC12 cells, which is inhibited by either overexpression of Rap1GAP or siRNA-mediated knockdown of Rap1 itself or the guanine nucleotide exchange factor C3G. Significantly, this pathway also appears to function in the regulation of proliferation of neuroblastoma cells such as SK-N-SH and SH-SY5Y, because abrogation of Rap1 activity by Rap1-specific siRNA or overexpression of Rap1GAP reduces cellular growth. These results suggest that ALK activation of Rap1 may contribute to cell proliferation and oncogenesis of neuroblastoma driven by gain-of-function mutant ALK receptors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Altschuler DL, Ribeiro-Neto F . (1998). Mitogenic and oncogenic properties of the small G protein Rap1b. Proc Natl Acad Sci USA 95: 7475–7479.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey CL, Kelly P, Casey PJ . (2009). Activation of Rap1 promotes prostate cancer metastasis. Cancer Res 69: 4962–4968.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bazigou E, Apitz H, Johansson J, Loren CE, Hirst EM, Chen PL et al. (2007). Anterograde Jelly belly and Alk receptor tyrosine kinase signaling mediates retinal axon targeting in Drosophila. Cell 128: 961–975.

    CAS  PubMed  Google Scholar 

  • Bilsland JG, Wheeldon A, Mead A, Znamenskiy P, Almond S, Waters KA et al. (2008). Behavioral and neurochemical alterations in mice deficient in anaplastic lymphoma kinase suggest therapeutic potential for psychiatric indications. Neuropsychopharmacology 33: 685–700.

    CAS  PubMed  Google Scholar 

  • Bos JL, de Rooij J, Reedquist KA . (2001). Rap1 signalling: adhering to new models. Nat Rev Mol Cell Biol 2: 369–377.

    CAS  PubMed  Google Scholar 

  • Caren H, Abel F, Kogner P, Martinsson T . (2008). High incidence of DNA mutations and gene amplifications of the ALK gene in advanced sporadic neuroblastoma tumours. Biochem J 416: 153–159.

    CAS  PubMed  Google Scholar 

  • Chen Y, Takita J, Choi YL, Kato M, Ohira M, Sanada M et al. (2008). Oncogenic mutations of ALK kinase in neuroblastoma. Nature 455: 971–974.

    CAS  PubMed  Google Scholar 

  • de Jong R, van Wijk A, Heisterkamp N, Groffen J . (1998). C3G is tyrosine-phosphorylated after integrin-mediated cell adhesion in normal but not in Bcr/Abl expressing cells. Oncogene 17: 2805–2810.

    CAS  PubMed  Google Scholar 

  • Degoutin J, Vigny M, Gouzi JY . (2007). ALK activation induces Shc and FRS2 recruitment: signaling and phenotypic outcomes in PC12 cells differentiation. FEBS Lett 581: 727–734.

    CAS  PubMed  Google Scholar 

  • Englund C, Loren CE, Grabbe C, Varshney GK, Deleuil F, Hallberg B et al. (2003). Jeb signals through the Alk receptor tyrosine kinase to drive visceral muscle fusion. Nature 425: 512–516.

    CAS  PubMed  Google Scholar 

  • Feller SM, Knudsen B, Hanafusa H . (1995). Cellular proteins binding to the first Src homology 3 (SH3) domain of the proto-oncogene product c-Crk indicate Crk-specific signaling pathways. Oncogene 10: 1465–1473.

    CAS  PubMed  Google Scholar 

  • Franke B, Akkerman JW, Bos JL . (1997). Rapid Ca2+-mediated activation of Rap1 in human platelets. EMBO J 16: 252–259.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Galkin AV, Melnick JS, Kim S, Hood TL, Li N, Li L et al. (2007). Identification of NVP-TAE684, a potent, selective, and efficacious inhibitor of NPM-ALK. Proc Natl Acad Sci USA 104: 270–275.

    CAS  PubMed  Google Scholar 

  • Gao L, Feng Y, Bowers R, Becker-Hapak M, Gardner J, Council L et al. (2006). Ras-associated protein-1 regulates extracellular signal-regulated kinase activation and migration in melanoma cells: two processes important to melanoma tumorigenesis and metastasis. Cancer Res 66: 7880–7888.

    CAS  PubMed  Google Scholar 

  • George RE, Sanda T, Hanna M, Frohling S, Luther II W, Zhang J et al. (2008). Activating mutations in ALK provide a therapeutic target in neuroblastoma. Nature 455: 975–978.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gotoh Y, Nishida E, Yamashita T, Hoshi M, Kawakami M, Sakai H . (1990). Microtubule-associated-protein (MAP) kinase activated by nerve growth factor and epidermal growth factor in PC12 cells. Identity with the mitogen-activated MAP kinase of fibroblastic cells. Eur J Biochem 193: 661–669.

    CAS  PubMed  Google Scholar 

  • Gouzi JY, Moog-Lutz C, Vigny M, Brunet-de Carvalho N . (2005). Role of the subcellular localization of ALK tyrosine kinase domain in neuronal differentiation of PC12 cells. J Cell Sci 118: 5811–5823.

    CAS  PubMed  Google Scholar 

  • Greene LA, Kaplan DR . (1995). Early events in neurotrophin signalling via Trk and p75 receptors. Curr Opin Neurobiol 5: 579–587.

    CAS  PubMed  Google Scholar 

  • Guerrero C, Martin-Encabo S, Fernandez-Medarde A, Santos E . (2004). C3G-mediated suppression of oncogene-induced focus formation in fibroblasts involves inhibition of ERK activation, cyclin A expression and alterations of anchorage-independent growth. Oncogene 23: 4885–4893.

    CAS  PubMed  Google Scholar 

  • Gyan E, Frew M, Bowen D, Beldjord C, Preudhomme C, Lacombe C et al. (2005). Mutation in RAP1 is a rare event in myelodysplastic syndromes. Leukemia 19: 1678–1680.

    CAS  PubMed  Google Scholar 

  • Hallberg B, Ashcroft M, Loeb DM, Kaplan DR, Downward J . (1998). Nerve growth factor induced stimulation of Ras requires Trk interaction with Shc but does not involve phosphoinositide 3-OH kinase. Oncogene 17: 691–697.

    CAS  PubMed  Google Scholar 

  • Hemmeryckx B, van Wijk A, Reichert A, Kaartinen V, de Jong R, Pattengale PK et al. (2001). Crkl enhances leukemogenesis in BCR/ABL P190 transgenic mice. Cancer Res 61: 1398–1405.

    CAS  PubMed  Google Scholar 

  • Henriksson ML, Sundin C, Jansson AL, Forsberg A, Palmer RH, Hallberg B . (2002). Exoenzyme S shows selective ADP-ribosylation and GTPase-activating protein (GAP) activities towards small GTPases in vivo. Biochem J 367: 617–628.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hisata S, Sakisaka T, Baba T, Yamada T, Aoki K, Matsuda M et al. (2007). Rap1-PDZ-GEF1 interacts with a neurotrophin receptor at late endosomes, leading to sustained activation of Rap1 and ERK and neurite outgrowth. J Cell Biol 178: 843–860.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hong K, Lou L, Gupta S, Ribeiro-Neto F, Altschuler DL . (2008). A novel Epac-Rap-PP2A signaling module controls cAMP-dependent Akt regulation. J Biol Chem 283: 23129–23138.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ichiba T, Hashimoto Y, Nakaya M, Kuraishi Y, Tanaka S, Kurata T et al. (1999). Activation of C3G guanine nucleotide exchange factor for Rap1 by phosphorylation of tyrosine 504. J Biol Chem 274: 14376–14381.

    CAS  PubMed  Google Scholar 

  • Ishida D, Kometani K, Yang H, Kakugawa K, Masuda K, Iwai K et al. (2003). Myeloproliferative stem cell disorders by deregulated Rap1 activation in SPA-1-deficient mice. Cancer Cell 4: 55–65.

    CAS  PubMed  Google Scholar 

  • Ishihara T, Iino Y, Mohri A, Mori I, Gengyo-Ando K, Mitani S et al. (2002). HEN-1, a secretory protein with an LDL receptor motif, regulates sensory integration and learning in Caenorhabditis elegans. Cell 109: 639–649.

    CAS  PubMed  Google Scholar 

  • Iwahara T, Fujimoto J, Wen D, Cupples R, Bucay N, Arakawa T et al. (1997). Molecular characterization of ALK, a receptor tyrosine kinase expressed specifically in the nervous system. Oncogene 14: 439–449.

    CAS  PubMed  Google Scholar 

  • Janoueix-Lerosey I, Lequin D, Brugieres L, Ribeiro A, de Pontual L, Combaret V et al. (2008). Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature 455: 967–970.

    CAS  PubMed  Google Scholar 

  • Kao S, Jaiswal RK, Kolch W, Landreth GE . (2001). Identification of the mechanisms regulating the differential activation of the mapk cascade by epidermal growth factor and nerve growth factor in PC12 cells. J Biol Chem 276: 18169–18177.

    CAS  PubMed  Google Scholar 

  • Lamant L, Pulford K, Bischof D, Morris SW, Mason DY, Delsol G et al. (2000). Expression of the ALK tyrosine kinase gene in neuroblastoma. Am J Pathol 156: 1711–1721.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HH, Norris A, Weiss JB, Frasch M . (2003). Jelly belly protein activates the receptor tyrosine kinase Alk to specify visceral muscle pioneers. Nature 425: 507–512.

    CAS  PubMed  Google Scholar 

  • Liao EH, Hung W, Abrams B, Zhen M . (2004). An SCF-like ubiquitin ligase complex that controls presynaptic differentiation. Nature 430: 345–350.

    CAS  PubMed  Google Scholar 

  • Lin Y, Mettling C, Chou C . (2000). Rap1-suppressed tumorigenesis is concomitant with the interference in ras effector signaling. FEBS Lett 467: 184–188.

    CAS  PubMed  Google Scholar 

  • Lopes SS, Yang X, Muller J, Carney TJ, McAdow AR, Rauch GJ et al. (2008). Leukocyte tyrosine kinase functions in pigment cell development. PLoS Genet 4: e1000026.

    PubMed  PubMed Central  Google Scholar 

  • Loren CE, Englund C, Grabbe C, Hallberg B, Hunter T, Palmer RH . (2003). A crucial role for the anaplastic lymphoma kinase receptor tyrosine kinase in gut development in Drosophila melanogaster. EMBO Rep 4: 781–786.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loren CE, Scully A, Grabbe C, Edeen PT, Thomas J, McKeown M et al. (2001). Identification and characterization of DAlk: a novel Drosophila melanogaster RTK which drives ERK activation in vivo. Genes Cells 6: 531–544.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lou L, Urbani J, Ribeiro-Neto F, Altschuler DL . (2002). cAMP inhibition of Akt is mediated by activated and phosphorylated Rap1b. J Biol Chem 277: 32799–32806.

    CAS  PubMed  Google Scholar 

  • Maris JM, Hogarty MD, Bagatell R, Cohn SL . (2007). Neuroblastoma. Lancet 369: 2106–2120.

    CAS  PubMed  Google Scholar 

  • Marshall CJ . (1995). Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80: 179–185.

    CAS  PubMed  Google Scholar 

  • Matsuse M, Mitsutake N, Rogounovitch T, Saenko V, Nakazawa Y, Rumyantsev P et al. (2009). Mutation analysis of RAP1 gene in papillary thyroid carcinomas. Endocr J 56: 161–164.

    CAS  PubMed  Google Scholar 

  • McDermott U, Iafrate AJ, Gray NS, Shioda T, Classon M, Maheswaran S et al. (2008). Genomic alterations of anaplastic lymphoma kinase may sensitize tumors to anaplastic lymphoma kinase inhibitors. Cancer Res 68: 3389–3395.

    CAS  PubMed  Google Scholar 

  • Minato N, Hattori M . (2009). Spa-1 (Sipa1) and Rap signaling in leukemia and cancer metastasis. Cancer Sci 100: 17–23.

    CAS  PubMed  Google Scholar 

  • Miyake I, Hakomori Y, Shinohara A, Gamou T, Saito M, Iwamatsu A et al. (2002). Activation of anaplastic lymphoma kinase is responsible for hyperphosphorylation of ShcC in neuroblastoma cell lines. Oncogene 21: 5823–5834.

    CAS  PubMed  Google Scholar 

  • Moog-Lutz C, Degoutin J, Gouzi JY, Frobert Y, Brunet-de Carvalho N, Bureau J et al. (2005). Activation and inhibition of anaplastic lymphoma kinase receptor tyrosine kinase by monoclonal antibodies and absence of agonist activity of pleiotrophin. J Biol Chem 280: 26039–26048.

    CAS  PubMed  Google Scholar 

  • Morris SW, Kirstein MN, Valentine MB, Dittmer KG, Shapiro DN, Saltman DL et al. (1994). Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science 263: 1281–1284.

    CAS  PubMed  Google Scholar 

  • Morris SW, Naeve C, Mathew P, James PL, Kirstein MN, Cui X et al. (1997). ALK, the chromosome 2 gene locus altered by the t(2;5) in non-Hodgkin's lymphoma, encodes a novel neural receptor tyrosine kinase that is highly related to leukocyte tyrosine kinase (LTK). Oncogene 14: 2175–2188.

    CAS  PubMed  Google Scholar 

  • Mosse YP, Laudenslager M, Longo L, Cole KA, Wood A, Attiyeh EF et al. (2008). Identification of ALK as a major familial neuroblastoma predisposition gene. Nature 455: 930–935.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Motegi A, Fujimoto J, Kotani M, Sakuraba H, Yamamoto T . (2004). ALK receptor tyrosine kinase promotes cell growth and neurite outgrowth. J Cell Sci 117: 3319–3329.

    CAS  PubMed  Google Scholar 

  • Muramatsu T . (2002). Midkine and pleiotrophin: two related proteins involved in development, survival, inflammation and tumorigenesis. J Biochem 132: 359–371.

    CAS  PubMed  Google Scholar 

  • Osajima-Hakomori Y, Miyake I, Ohira M, Nakagawara A, Nakagawa A, Sakai R . (2005). Biological role of anaplastic lymphoma kinase in neuroblastoma. Am J Pathol 167: 213–222.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer RH, Vernersson E, Grabbe C, Hallberg B . (2009). Anaplastic lymphoma kinase: signalling in development and disease. Biochem J 420: 345–361.

    CAS  PubMed  Google Scholar 

  • Piccinini G, Bacchiocchi R, Serresi M, Vivani C, Rossetti S, Gennaretti C et al. (2002). A ligand-inducible epidermal growth factor receptor/anaplastic lymphoma kinase chimera promotes mitogenesis and transforming properties in 3T3 cells. J Biol Chem 277: 22231–22239.

    CAS  PubMed  Google Scholar 

  • Qiu MS, Green SH . (1991). NGF and EGF rapidly activate p21ras in PC12 cells by distinct, convergent pathways involving tyrosine phosphorylation. Neuron 7: 937–946.

    CAS  PubMed  Google Scholar 

  • Raaijmakers JH, Bos JL . (2009). Specificity in Ras and Rap signaling. J Biol Chem 284: 10995–10999.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Radha V, Rajanna A, Gupta RK, Dayma K, Raman T . (2008). The guanine nucleotide exchange factor, C3G regulates differentiation and survival of human neuroblastoma cells. J Neurochem 107: 1424–1435.

    CAS  PubMed  Google Scholar 

  • Reiner DJ, Ailion M, Thomas JH, Meyer BJ . (2008). C. elegans anaplastic lymphoma kinase ortholog SCD-2 controls dauer formation by modulating TGF-beta signaling. Curr Biol 18: 1101–1109.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ren XD, Kiosses WB, Schwartz MA . (1999). Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton. EMBO J 18: 578–585.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ribeiro-Neto F, Urbani J, Lemee N, Lou L, Altschuler DL . (2002). On the mitogenic properties of Rap1b: cAMP-induced G(1)/S entry requires activated and phosphorylated Rap1b. Proc Natl Acad Sci USA 99: 5418–5423.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitt JM, Stork PJ . (2001). Cyclic AMP-mediated inhibition of cell growth requires the small G protein Rap1. Mol Cell Biol 21: 3671–3683.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitt JM, Stork PJ . (2002). PKA phosphorylation of Src mediates cAMP's inhibition of cell growth via Rap1. Mol Cell 9: 85–94.

    CAS  PubMed  Google Scholar 

  • Schwamborn JC, Puschel AW . (2004). The sequential activity of the GTPases Rap1B and Cdc42 determines neuronal polarity. Nat Neurosci 7: 923–929.

    CAS  PubMed  Google Scholar 

  • Shiota M, Fujimoto J, Semba T, Satoh H, Yamamoto T, Mori S . (1994). Hyperphosphorylation of a novel 80 kDa protein-tyrosine kinase similar to Ltk in a human Ki-1 lymphoma cell line, AMS3. Oncogene 9: 1567–1574.

    CAS  PubMed  Google Scholar 

  • Shiota M, Nakamura S, Ichinohasama R, Abe M, Akagi T, Takeshita M et al. (1995). Anaplastic large cell lymphomas expressing the novel chimeric protein p80NPM/ALK: a distinct clinicopathologic entity. Blood 86: 1954–1960.

    CAS  PubMed  Google Scholar 

  • Shirinian M, Varshney G, Loren CE, Grabbe C, Palmer RH . (2007). Drosophila anaplastic lymphoma kinase regulates Dpp signalling in the developing embryonic gut. Differentiation 75: 418–426.

    CAS  PubMed  Google Scholar 

  • Souttou B, Carvalho NB, Raulais D, Vigny M . (2001). Activation of anaplastic lymphoma kinase receptor tyrosine kinase induces neuronal differentiation through the mitogen-activated protein kinase pathway. J Biol Chem 276: 9526–9531.

    CAS  PubMed  Google Scholar 

  • Stoica GE, Kuo A, Aigner A, Sunitha I, Souttou B, Malerczyk C et al. (2001). Identification of anaplastic lymphoma kinase as a receptor for the growth factor pleiotrophin. J Biol Chem 276: 16772–16779.

    CAS  PubMed  Google Scholar 

  • Stoica GE, Kuo A, Powers C, Bowden ET, Sale EB, Riegel AT et al. (2002). Midkine binds to anaplastic lymphoma kinase (ALK) and acts as a growth factor for different cell types. J Biol Chem 277: 35990–35998.

    CAS  PubMed  Google Scholar 

  • Stork PJ . (2003). Does Rap1 deserve a bad Rap? Trends Biochem Sci 28: 267–275.

    CAS  PubMed  Google Scholar 

  • Stute C, Schimmelpfeng K, Renkawitz-Pohl R, Palmer RH, Holz A . (2004). Myoblast determination in the somatic and visceral mesoderm depends on Notch signalling as well as on milliways(mili(Alk)) as receptor for Jeb signalling. Development 131: 743–754.

    CAS  PubMed  Google Scholar 

  • Traverse S, Gomez N, Paterson H, Marshall C, Cohen P . (1992). Sustained activation of the mitogen-activated protein (MAP) kinase cascade may be required for differentiation of PC12 cells. Comparison of the effects of nerve growth factor and epidermal growth factor. Biochem J 288 (Part 2): 351–355.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsygankova OM, Prendergast GV, Puttaswamy K, Wang Y, Feldman MD, Wang H et al. (2007). Downregulation of Rap1GAP contributes to Ras transformation. Mol Cell Biol 27: 6647–6658.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Varshney GK, Palmer RH . (2006). The bHLH transcription factor Hand is regulated by Alk in the Drosophila embryonic gut. Biochem Biophys Res Commun 351: 839–846.

    CAS  PubMed  Google Scholar 

  • Vernersson E, Khoo NK, Henriksson ML, Roos G, Palmer RH, Hallberg B . (2006). Characterization of the expression of the ALK receptor tyrosine kinase in mice. Gene Expr Patterns 6: 448–461.

    CAS  PubMed  Google Scholar 

  • Voss AK, Britto JM, Dixon MP, Sheikh BN, Collin C, Tan SS et al. (2008). C3G regulates cortical neuron migration, preplate splitting and radial glial cell attachment. Development 135: 2139–2149.

    CAS  PubMed  Google Scholar 

  • Voss AK, Gruss P, Thomas T . (2003). The guanine nucleotide exchange factor C3G is necessary for the formation of focal adhesions and vascular maturation. Development 130: 355–367.

    CAS  PubMed  Google Scholar 

  • Voss AK, Krebs DL, Thomas T . (2006). C3G regulates the size of the cerebral cortex neural precursor population. EMBO J 25: 3652–3663.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vossler MR, Yao H, York RD, Pan MG, Rim CS, Stork PJ . (1997). cAMP activates MAP kinase and Elk-1 through a B-Raf- and Rap1-dependent pathway. Cell 89: 73–82.

    CAS  PubMed  Google Scholar 

  • Wienecke R, Konig A, DeClue JE . (1995). Identification of tuberin, the tuberous sclerosis-2 product. Tuberin possesses specific Rap1GAP activity. J Biol Chem 270: 16409–16414.

    CAS  PubMed  Google Scholar 

  • Wu C, Lai CF, Mobley WC . (2001). Nerve growth factor activates persistent Rap1 signaling in endosomes. J Neurosci 21: 5406–5416.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yajnik V, Paulding C, Sordella R, McClatchey AI, Saito M, Wahrer DC et al. (2003). DOCK4, a GTPase activator, is disrupted during tumorigenesis. Cell 112: 673–684.

    CAS  PubMed  Google Scholar 

  • Yang HL, Eriksson T, Vernersson E, Vigny M, Hallberg B, Palmer RH . (2007). The ligand Jelly Belly (Jeb) activates the Drosophila Alk RTK to drive PC12 cell differentiation, but is unable to activate the mouse ALK RTK. J Exp Zoolog B Mol Dev Evol 308: 269–282.

    Google Scholar 

  • York RD, Yao H, Dillon T, Ellig CL, Eckert SP, McCleskey EW et al. (1998). Rap1 mediates sustained MAP kinase activation induced by nerve growth factor. Nature 392: 622–626.

    CAS  PubMed  Google Scholar 

  • Zemojtel T, Penzkofer T, Duchniewicz M, Zwartkruis FJ . (2006). HRap1B-retro: a novel human processed rap1B gene blurs the picture? Leukemia 20: 145–146; author reply 146-7.

    CAS  PubMed  Google Scholar 

  • Zwartkruis FJ, Wolthuis RM, Nabben NM, Franke B, Bos JL . (1998). Extracellular signal-regulated activation of Rap1 fails to interfere in Ras effector signalling. EMBO J 17: 5905–5912.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Caroline Grabbe for comments and critical reading of the paper and Lovisa Olofsson for initial experiments. BH is supported by a Grant (08-0597) from the Swedish Cancer Foundation, Lions Cancer Research Foundation, Umeå, and Grant (08/084) from the Swedish Childhood Cancer Foundation. RHP is a Swedish Cancer Foundation Research Fellow and is supported by grants from the Swedish Research Council (621-2003-3399), the Swedish Childhood Cancer Foundation (08/074) and the Association for International Cancer Research (AICR 08-0177).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Hallberg.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schönherr, C., Yang, HL., Vigny, M. et al. Anaplastic lymphoma kinase activates the small GTPase Rap1 via the Rap1-specific GEF C3G in both neuroblastoma and PC12 cells. Oncogene 29, 2817–2830 (2010). https://doi.org/10.1038/onc.2010.27

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.27

Keywords

This article is cited by

Search

Quick links