Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Mutant p53 initiates a feedback loop that involves Egr-1/EGF receptor/ERK in prostate cancer cells

Abstract

Early growth response-1 (Egr-1) is overexpressed in human prostate tumors and contributes to cancer progression. On the other hand, mutation of p53 is associated with advanced prostate cancer, as well as with metastasis and hormone independence. This study shows that in prostate cell lines in culture, Egr-1 overexpression correlated with an alteration of p53 activity because of the expression of SV40 large T-antigen or because of a mutation in the TP53 gene. In cells containing altered p53 activity, Egr-1 expression was abolished by pharmacological inhibition or RNAi silencing of p53. Although forced expression of wild-type p53 was not sufficient to trigger Egr-1 transcription, four different mutants of p53 were shown to induce Egr-1. Direct binding of p53 to the EGR1 promoter could not be detected. Instead, Egr-1 transcription was driven by the ERK1/2 pathway, as it was abrogated by specific inhibitors of MEK. Egr-1 increased the transcription of HB-EGF (epidermal growth factor), amphiregulin and epiregulin, resulting in autocrine activation of the EGF receptor (EGFR) and downstream MEK/ERK cascade. Thus, mutant p53 initiates a feedback loop that involves ERK1/2-mediated transactivation of Egr-1, which in turn increases the secretion of EGFR ligands and stimulates the EGFR signaling pathway. Finally, p53 may further regulate this feedback loop by altering the level of EGFR expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Abdulkadir SA, Qu Z, Garabedian E, Song SK, Peters TJ, Svaren J et al. (2001). Impaired prostate tumorigenesis in Egr1-deficient mice. Nat Med 7: 101–107.

    Article  CAS  PubMed  Google Scholar 

  • Bae VL, Jackson-Cook CK, Brothman AR, Maygarden SJ, sWare JL . (1994). Tumorigenicity of SV40 T antigen immortalized human prostate epithelial cells: association with decreased epidermal growth factor receptor (EGFR) expression. Int J Cancer 58: 721–729.

    Article  CAS  PubMed  Google Scholar 

  • Baker SJ, Markowitz S, Fearon ER, Willson JK, Vogelstein B . (1990). Suppression of human colorectal carcinoma cell growth by wild-type p53. Science 249: 912–915.

    Article  CAS  PubMed  Google Scholar 

  • Baron V, De Gregorio G, Krones-Herzig A, Virolle T, Calogero A, Urcis R et al. (2003). Inhibition of Egr-1 expression reverses transformation of prostate cancer cells in vitro and in vivo. Oncogene 22: 4194–4204.

    Article  CAS  PubMed  Google Scholar 

  • Bello D, Webber MM, Kleinman HK, Wartinger DD, Rhim JS . (1997). Androgen responsive adult human prostatic epithelial cell lines immortalized by human papillomavirus 18. Carcinogenesis 18: 1215–1223.

    Article  CAS  PubMed  Google Scholar 

  • Biswas S, Criswell TL, Wang SE, Arteaga CL . (2006). Inhibition of transforming growth factor-beta signaling in human cancer: targeting a tumor suppressor network as a therapeutic strategy. Clin Cancer Res 12: 4142–4146.

    Article  CAS  PubMed  Google Scholar 

  • Bocchetta M, Eliasz S, De Marco MA, Rudzinski J, Zhang L, Carbone M . (2008). The SV40 large T antigen-p53 complexes bind and activate the insulin-like growth factor-I promoter stimulating cell growth. Cancer Res 68: 1022–1029.

    Article  CAS  PubMed  Google Scholar 

  • Cao X, Mahendran R, Guy GR, Tan YH . (1993). Detection and characterization of cellular EGR-1 binding to its recognition site. J Biol Chem 268: 16949–16957.

    CAS  PubMed  Google Scholar 

  • Connolly JM, Rose DP . (1991). Autocrine regulation of DU145 human prostate cancer cell growth by epidermal growth factor-related polypeptides. Prostate 19: 173–180.

    Article  CAS  PubMed  Google Scholar 

  • Deb SP, Munoz RM, Brown DR, Subler MA, Deb S . (1994). Wild-type human p53 activates the human epidermal growth factor receptor promoter. Oncogene 9: 1341–1349.

    CAS  PubMed  Google Scholar 

  • Deffie A, Wu H, Reinke V, Lozano G . (1993). The tumor suppressor p53 regulates its own transcription. Mol Cell Biol 13: 3415–3423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eid MA, Kumar MV, Iczkowski KA, Bostwick DG, Tindall DJ . (1998). Expression of early growth response genes in human prostate cancer. Cancer Res 58: 2461–2468.

    CAS  PubMed  Google Scholar 

  • Gitenay D, Baron VT . (2009). Is EGR1 a potential target for prostate cancer therapy? Future Oncol 5: 993–1003.

    Article  CAS  PubMed  Google Scholar 

  • Gurova KV, Rokhlin OW, Budanov AV, Burdelya LG, Chumakov PM, Cohen MB et al. (2003). Cooperation of two mutant p53 alleles contributes to Fas resistance of prostate carcinoma cells. Cancer Res 63: 2905–2912.

    CAS  PubMed  Google Scholar 

  • Horoszewicz JS, Leong SS, Chu TM, Wajsman ZL, Friedman M, Papsidero L et al. (1980). The LNCaP cell line--a new model for studies on human prostatic carcinoma. Prog Clin Biol Res 37: 115–132.

    CAS  PubMed  Google Scholar 

  • Isaacs WB, Carter BS, Ewing CM . (1991). Wild-type p53 suppresses growth of human prostate cancer cells containing mutant p53 alleles. Cancer Res 51: 4716–4720.

    CAS  PubMed  Google Scholar 

  • Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ . (2007). Cancer statistics, 2007. CA Cancer J Clin 57: 43–66.

    Article  PubMed  Google Scholar 

  • Kaighn ME, Narayan KS, Ohnuki Y, Lechner JF, Jones LW . (1979). Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest Urol 17: 16–23.

    CAS  PubMed  Google Scholar 

  • Komarov PG, Komarova EA, Kondratov RV, Christov-Tselkov K, Coon JS, Chernov MV et al. (1999). A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science 285: 1733–1737.

    Article  CAS  PubMed  Google Scholar 

  • Lilyestrom W, Klein MG, Zhang R, Joachimiak A, Chen XS . (2006). Crystal structure of SV40 large T-antigen bound to p53: interplay between a viral oncoprotein and a cellular tumor suppressor. Genes Dev 20: 2373–2382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long SB, Ho HY, Chen CL, Lai MD . (1995). Complex of simian virus large T antigen and p53 can bind DNA specifically. Anticancer Res 15: 1375–1380.

    CAS  PubMed  Google Scholar 

  • Ludes-Meyers JH, Subler MA, Shivakumar CV, Munoz RM, Jiang P, Bigger JE et al. (1996). Transcriptional activation of the human epidermal growth factor receptor promoter by human p53. Mol Cell Biol 16: 6009–9019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishi H, Nishi KH, Johnson AC . (2002). Early growth response-1 gene mediates up-regulation of epidermal growth factor receptor expression during hypoxia. Cancer Res 62: 827–834.

    CAS  PubMed  Google Scholar 

  • Parda DS, Thraves PJ, Kuettel MR, Lee MS, Arnstein P, Kaighn ME et al. (1993). Neoplastic transformation of a human prostate epithelial cell line by the v-Ki-ras oncogene. Prostate 23: 91–98.

    Article  CAS  PubMed  Google Scholar 

  • Ramsamooj P, Kuettel M, Dritschilo A, Jung M . (1997). p53-Independent tumorigenic progression of human prostate cells. Radiat Oncol Investig 5: 269–274.

    Article  CAS  PubMed  Google Scholar 

  • Shin SY, Bahk YY, Ko J, Chung IY, Lee YS, Downward J et al. (2006). Suppression of Egr-1 transcription through targeting of the serum response factor by oncogenic H-Ras. EMBO J 25: 1093–1103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silverman ES, Collins T . (1999). Pathways of Egr-1-mediated gene transcription in vascular biology. Am J Pathol 154: 665–670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sramkoski RM, Pretlow 2nd TG, Giaconia JM, Pretlow TP, Schwartz S, Sy MS et al. (1999). A new human prostate carcinoma cell line 22Rv1 in vitro. Cell Dev Biol Anim 35: 403–409.

    Article  CAS  Google Scholar 

  • Stone KR, Mickey DD, Wunderli H, Mickey GH, Paulson DF . (1978). Isolation of a human prostate carcinoma cell line (DU 145). Int J Cancer 21: 274–281.

    Article  CAS  PubMed  Google Scholar 

  • Svaren J, Ehrig T, Abdulkadir SA, Ehrengruber MU, Watson MA, Milbrandt J . (2000). EGR1 target genes in prostate carcinoma cells identified by microarray analysis. J Biol Chem 275: 38524–38531.

    Article  CAS  PubMed  Google Scholar 

  • Teicher BA . (2007). Transforming growth factor-beta and the immune response to malignant disease. Clin Cancer Res 13: 6247–6251.

    Article  CAS  PubMed  Google Scholar 

  • Thiel G, Cibelli G . (2002). Regulation of life and death by the zinc finger transcription factor Egr-1. J Cell Physiol 193: 287–292.

    Article  CAS  PubMed  Google Scholar 

  • Thigpen AE, Cala KM, Guileyardo JM, Molberg KH, McConnell JD, Russell DW . (1996). Increased expression of early growth response-1 messenger ribonucleic acid in prostatic adenocarcinoma. J Urol 155: 975–981.

    Article  CAS  PubMed  Google Scholar 

  • Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z et al. (2004). in vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303: 844–848.

    Article  CAS  PubMed  Google Scholar 

  • Virolle T, Krones-Herzig A, Baron V, De Gregorio G, Adamson ED, Mercola D . (2003). Egr1 promotes growth and survival of prostate cancer cells. Identification of novel Egr1 target genes. J Biol Chem 278: 11802–11810.

    Article  CAS  PubMed  Google Scholar 

  • Weisz L, Zalcenstein A, Stambolsky P, Cohen Y, Goldfinger N, Oren M et al. (2004). Transactivation of the EGR1 gene contributes to mutant p53 gain of function. Cancer Res 64: 8318–8327.

    Article  CAS  PubMed  Google Scholar 

  • Wrzesinski SH, Wan YY, Flavell RA . (2007). Transforming growth factor-beta and the immune response: implications for anticancer therapy. Clin Cancer Res 13: 5262–5270.

    Article  CAS  PubMed  Google Scholar 

  • Wu GS . (2004). The functional interactions between the p53 and MAPK signaling pathways. Cancer Biol Ther 3: 156–161.

    Article  CAS  PubMed  Google Scholar 

  • Yang SZ, Abdulkadir SA . (2003). Early growth response gene 1 modulates androgen receptor signaling in prostate carcinoma cells. J Biol Chem 278: 39906–39911.

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Baron V, Mercola D, Mustelin T, Adamson ED . (2007). A network of p73, p53 and Egr1 is required for efficient apoptosis in tumor cells. Cell Death Differ 14: 436–446.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Ruth Gjerset (Torrey Pines Institute for Molecular Studies, San Diego, CA) for comments and critical reading of the paper. We are grateful to Dr Eileen Adamson and Dr Dan Mercola (University of California, Irvine, CA) for their support and many suggestions. This work was supported by a Grant from NIH/NCI-RO1 CA102688 (V Baron).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V T Baron.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sauer, L., Gitenay, D., Vo, C. et al. Mutant p53 initiates a feedback loop that involves Egr-1/EGF receptor/ERK in prostate cancer cells. Oncogene 29, 2628–2637 (2010). https://doi.org/10.1038/onc.2010.24

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.24

Keywords

This article is cited by

Search

Quick links