Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

DEK oncoprotein regulates transcriptional modifiers and sustains tumor initiation activity in high-grade neuroendocrine carcinoma of the lung

Abstract

Lung cancer shows diverse histological subtypes. Large-cell neuroendocrine cell carcinoma and small-cell lung carcinoma show similar histological features and clinical behaviors, and can be classified as high-grade neuroendocrine carcinoma (HGNEC) of the lung. Here we elucidated the molecular classification of pulmonary endocrine tumors by copy-number profiling. We compared alterations of copy number with the clinical outcome of HGNEC and identified a chromosomal gain of the DEK oncogene locus (6p22.3) that was significantly associated with poor prognosis. We further confirmed that DEK overexpression was associated with poor prognosis in a larger set of HGNEC. Downregulation of DEK by small hairpin RNA led to a marked reduction of in vitro colony formation, in vivo tumorigenicity and chemo-resistance, and was associated with loss of lung cancer stem cell markers. Gene expression profiling revealed that DEK downregulation was associated with altered expression of transcriptional regulators, which specifically include known targets of interchromosomal translocations in hematopoietic tumors, and knockdown of these epigenetic modifiers affected colony formation activity. Our study showed that DEK overexpression, partly through an increase in its gene dose, mediates the activity of global transcriptional regulators and is associated with tumor initiation activity and poor prognosis in HGNEC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Alexiadis V, Waldmann T, Andersen J, Mann M, Knippers R, Gruss C . (2000). The protein encoded by the proto-oncogene DEK changes the topology of chromatin and reduces the efficiency of DNA replication in a chromatin-specific manner. Genes Dev 14: 1308–1312.

    CAS  Google Scholar 

  • Asamura H, Kameya T, Matsuno Y, Noguchi M, Tada H, Ishikawa Y et al. (2006). Neuroendocrine neoplasms of the lung: a prognostic spectrum. J Clin Oncol 24: 70–76.

    Article  Google Scholar 

  • Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B et al. (2007). A perivascular niche for brain tumor stem cells. Cancer Cell 11: 69–82.

    Article  CAS  Google Scholar 

  • Campillos M, García MA, Valdivieso F, Vázquez J . (2003). Transcriptional activation by AP-2alpha is modulated by the oncogene DEK. Nucleic Acids Res 31: 1571–1575.

    Article  CAS  Google Scholar 

  • Carro MS, Spiga FM, Quarto M, Di Ninni V, Volorio S, Alcalay M et al. (2006). DEK Expression is controlled by E2F and deregulated in diverse tumor types. Cell Cycle 5: 1202–1207.

    Article  CAS  Google Scholar 

  • Cavellán E, Asp P, Percipalle P, Farrants AK . (2006). The WSTF-SNF2h chromatin remodeling complex interacts with several nuclear proteins in transcription. J Biol Chem 281: 16264–16271.

    Article  Google Scholar 

  • Cleary J, Sitwala KV, Khodadoust MS, Kwok RP, Mor-Vaknin N, Cebrat M et al. (2005). p300/CBP-associated factor drives DEK into interchromatin granule clusters. J Biol Chem 280: 31760–31767.

    Article  CAS  Google Scholar 

  • Collins EC, Appert A, Ariza-McNaughton L, Pannell R, Yamada Y, Rabbitts TH . (2002). Mouse Af9 is a controller of embryo patterning, like Mll, whose human homologue fuses with Af9 after chromosomal translocation in leukemia. Mol Cell Biol 22: 7313–7324.

    Article  CAS  Google Scholar 

  • D'Adda T, Bottarelli L, Azzoni C, Pizzi S, Bongiovanni M, Papotti M et al. (2005). Malignancy-associated X chromosome allelic losses in foregut endocrine neoplasms: further evidence from lung tumors. Mod Pathol 18: 795–805.

    Article  CAS  Google Scholar 

  • Fu GK, Grosveld G, Markovitz DM . (1997). DEK, an autoantigen involved in a chromosomal translocation in acute myelogenous leukemia, binds to the HIV-2 enhancer. Proc Natl Acad Sci USA 94: 1811–1815.

    Article  CAS  Google Scholar 

  • Fujita K, Sanada M, Harada H, Mori H, Niikura H, Omine M et al. (2009). Molecular cloning of t(2;7)(p24.3;p14.2), a novel chromosomal translocation in myelodysplastic syndrome-derived acute myeloid leukemia. J Hum Genet 54: 355–359.

    Article  CAS  Google Scholar 

  • Gamble MJ, Fisher RP . (2007). SET and PARP1 remove DEK from chromatin to permit access by the transcription machinery. Nat Struct Mol Biol 14: 548–555.

    Article  CAS  Google Scholar 

  • Glinsky GV . (2008). ‘Stemness’ genomics law governs clinical behavior of human cancer: implications for decision making in disease management. J Clin Oncol 26: 2846–2853.

    Article  Google Scholar 

  • Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA et al. (2009). Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138: 645–659.

    Article  CAS  Google Scholar 

  • Gustafsson BI, Kidd M, Chan A, Malfertheiner MV, Modlin IM . (2008). Bronchopulmonary neuroendocrine tumors. Cancer 113: 5–21.

    Article  CAS  Google Scholar 

  • Han S, Xuan Y, Liu S, Zhang M, Jin D, Jin R et al. (2009). Clinicopathological significance of DEK overexpression in serous ovarian tumors. Pathol Int 59: 443–447.

    Article  CAS  Google Scholar 

  • Hollenbach AD, McPherson CJ, Mientjes EJ, Iyengar R, Grosveld G . (2002). Daxx and histone deacetylase II associate with chromatin through an interaction with core histones and the chromatin-associated protein Dek. J Cell Sci 115: 3319–3330.

    CAS  Google Scholar 

  • Hsieh JJ, Nofziger DE, Weinmaster G, Hayward SD . (1997). Epstein-Barr virus immortalization: Notch2 interacts with CBF1 and blocks differentiation. J Virol 71: 1938–1945.

    CAS  Google Scholar 

  • Jiang T, Collins BJ, Jin N, Watkins DN, Brock MV, Matsui W et al. (2009). Achaete-scute complex homologue 1 regulates tumor-initiating capacity in human small cell lung cancer. Cancer Res 69: 845–854.

    Article  CAS  Google Scholar 

  • Jones MH, Virtanen C, Honjoh D, Miyoshi T, Satoh Y, Okumura S et al. (2004). Two prognostically significant subtypes of high-grade lung neuroendocrine tumours independent of small-cell and large-cell neuroendocrine carcinomas identified by gene expression profiles. Lancet 363: 775–781.

    Article  CAS  Google Scholar 

  • Kappes F, Damoc C, Knippers R, Przybylski M, Pinna LA, Gruss C . (2004). Phosphorylation by protein kinase CK2 changes the DNA binding properties of the human chromatin protein DEK. Mol Cell Biol 24: 6011–6020.

    Article  CAS  Google Scholar 

  • Kappes F, Fahrer J, Khodadoust MS, Tabbert A, Strasser C, Mor-Vaknin N et al. (2008). DEK is a poly(ADP-ribose) acceptor in apoptosis and mediates resistance to genotoxic stress. Mol Cell Biol 28: 3245–3257.

    Article  CAS  Google Scholar 

  • Katoh H, Ojima H, Kokubu A, Saito S, Kondo T, Kosuge T et al. (2007). Genetically distinct and clinically relevant classification of hepatocellular carcinoma: putative therapeutic targets. Gastroenterology 133: 1475–1486.

    Article  CAS  Google Scholar 

  • Khodadoust MS, Verhaegen M, Kappes F, Riveiro-Falkenbach E, Cigudosa JC, Kim DS et al. (2009). Melanoma proliferation and chemoresistance controlled by the DEK oncogene. Cancer Res 69: 6405–6413.

    Article  CAS  Google Scholar 

  • Ko SI, Lee IS, Kim JY, Kim SM, Kim DW, Lee KS et al. (2006). Regulation of histone acetyltransferase activity of p300 and PCAF by proto-oncogene protein DEK. FEBS Lett 580: 3217–3222.

    Article  CAS  Google Scholar 

  • Kondoh N, Wakatsuki T, Ryo A, Hada A, Aihara T, Horiuchi S et al. (1999). Identification and characterization of genes associated with human hepatocellular carcinogenesis. Cancer Res 59: 4990–4996.

    CAS  Google Scholar 

  • Krivtsov AV, Twomey D, Feng Z, Stubbs MC, Wang Y, Faber J et al. (2006). Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 442: 818–822.

    Article  CAS  Google Scholar 

  • Mizutani K, Yoon K, Dang L, Tokunaga A, Gaiano N . (2007). Differential Notch signalling distinguishes neural stem cells from intermediate progenitors. Nature 449: 351–355.

    Article  CAS  Google Scholar 

  • Okita K, Ichisaka T, Yamanaka S . (2007). Generation of germline-competent induced pluripotent stem cells. Nature 448: 313–317.

    Article  CAS  Google Scholar 

  • Pina C, May G, Soneji S, Hong D, Enver T . (2008). MLLT3 regulates early human erythroid and megakaryocytic cell fate. Cell Stem Cell 2: 264–273.

    Article  CAS  Google Scholar 

  • Peacock CD, Watkins DN . (2008). Cancer stem cells and the ontogeny of lung cancer. J Clin Oncol 26: 2883–2889.

    Article  CAS  Google Scholar 

  • Peng WX, Shibata T, Katoh H, Kokubu A, Matsuno Y, Asamura H et al. (2005). Array-based comparative genomic hybridization analysis of high-grade neuroendocrine tumors of the lung. Cancer Sci 96: 661–667.

    Article  CAS  Google Scholar 

  • Righi L, Volante M, Rapa I, Scagliotti GV, Papotti M . (2007). Neuro-endocrine tumours of the lung. A review of relevant pathological and molecular data. Virchows Arch 451 (Suppl 1): S51–S59.

    Article  Google Scholar 

  • Sammons M, Wan SS, Vogel NL, Mientjes EJ, Grosveld G, Ashburner BP . (2006). Negative regulation of the RelA/p65 transactivation function by the product of the DEK proto-oncogene. J Biol Chem 281: 26802–26812.

    Article  CAS  Google Scholar 

  • Sattler M, Salgia R . (2003). Molecular and cellular biology of small cell lung cancer. Semin Oncol 30: 57–71.

    Article  CAS  Google Scholar 

  • Schuettengruber B, Chourrout D, Vervoort M, Leblanc B, Cavalli G . (2007). Genome regulation by polycomb and trithorax proteins. Cell 128: 735–745.

    Article  CAS  Google Scholar 

  • Scoumanne A, Chen X . (2007). The lysine-specific demethylase 1 is required for cell proliferation in both p53-dependent and -independent manners. J Biol Chem 282: 15471–15475.

    Article  CAS  Google Scholar 

  • Shibata T, Chuma M, Kokubu A, Sakamoto M, Hirohashi S . (2003). EBP50, a beta-catenin-associating protein, enhances Wnt signaling and is over-expressed in hepatocellular carcinoma. Hepatology 38: 178–186.

    Article  CAS  Google Scholar 

  • Shibata T, Kokubu A, Gotoh M, Ojima H, Ohta T, Yamamoto M et al. (2008). Genetic alteration of Keap1 confers constitutive Nrf2 activation and resistance to chemotherapy in gallbladder cancer. Gastroenterology 135: 1358–1368.

    Article  CAS  Google Scholar 

  • Shibata T, Uryu S, Kokubu A, Hosoda F, Ohki M, Sakiyama T et al. (2005). Genetic classification of lung adenocarcinoma based on array-based comparative genomic hybridization analysis: its association with clinicopathologic features. Clin Cancer Res 11: 6177–6185.

    Article  CAS  Google Scholar 

  • Sriuranpong V, Borges MW, Ravi RK, Arnold DR, Nelkin BD, Baylin SB et al. (2001). Notch signaling induces cell cycle arrest in small cell lung cancer cells. Cancer Res 61: 3200–3205.

    CAS  Google Scholar 

  • Soares LM, Zanier K, Mackereth C, Sattler M, Valcárcel J . (2006). Intron removal requires proofreading of U2AF/3′ splice site recognition by DEK. Science 312: 1961–1965.

    Article  Google Scholar 

  • Sonoda I, Imoto I, Inoue J, Shibata T, Shimada Y, Chin K et al. (2004). Frequent silencing of low density lipoprotein receptor-related protein 1B (LRP1B) expression by genetic and epigenetic mechanisms in esophageal squamous cell carcinoma. Cancer Res 64: 3741–3747.

    Article  CAS  Google Scholar 

  • Tokuzawa Y, Kaiho E, Maruyama M, Takahashi K, Mitsui K, Maeda M et al. (2003). Fbx15 is a novel target of Oct3/4 but is dispensable for embryonic stem cell self-renewal and mouse development. Mol Cell Biol 23: 2699–2708.

    Article  CAS  Google Scholar 

  • Travis WD, Brambilla E . (2004). Pathology and Genetics of Tumors of the Lung, Pleura, Thymus and Heart. IARC Press: Lyon, pp 341.

    Google Scholar 

  • Travis WD, Linnoila RI, Tsokos MG, Hitchcock CL, Cutler Jr GB, Nieman L et al. (1991). Neuroendocrine tumors of the lung with proposed criteria for large-cell neuroendocrine carcinoma: an ultrastructural, immunohistochemical, and flow cytometric study of 35 cases. Am J Surg Pathol 15: 529–553.

    Article  CAS  Google Scholar 

  • Visvader JE, Lindeman GJ . (2008). Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8: 755–768.

    Article  CAS  Google Scholar 

  • von Lindern M, Fornerod M, van Baal S, Jaegle M, de Wit T, Buijs A et al. (1992). The translocation (6;9), associated with a specific subtype of acute myeloid leukemia, results in the fusion of two genes, dek and can, and the expression of a chimeric, leukemia-specific dek-can mRNA. Mol Cell Biol 12: 1687–1697.

    Article  CAS  Google Scholar 

  • Walch AK, Zitzelsberger HF, Aubele MM, Mattis AE, Bauchinger M, Candidus S et al. (1998). Typical and atypical carcinoid tumors of the lung are characterized by 11q deletions as detected by comparative genomic hybridization. Am J Pathol 153: 1089–1098.

    Article  CAS  Google Scholar 

  • Widschwendter M, Fiegl H, Egle D, Mueller-Holzner E, Spizzo G, Marth C et al. (2007). Epigenetic stem cell signature in cancer. Nat Genet 39: 157–158.

    Article  CAS  Google Scholar 

  • Wise-Draper TM, Allen HV, Jones EE, Habash KB, Matsuo H, Wells SI . (2006). Apoptosis inhibition by the human DEK oncoprotein involves interference with p53 functions. Mol Cell Biol 26: 7506–7519.

    Article  CAS  Google Scholar 

  • Wise-Draper TM, Allen HV, Thobe MN, Jones EE, Habash KB, Münger K et al. (2005). The human DEK proto-oncogene is a senescence inhibitor and an upregulated target of high-risk human papillomavirus E7. J Virol 79: 14309–14317.

    Article  CAS  Google Scholar 

  • Wise-Draper TM, Mintz-Cole RA, Morris TA, Simpson DS, Wikenheiser-Brokamp KA, Currier MA et al. (2009a). Overexpression of the cellular DEK protein promotes epithelial transformation in vitro and in vivo. Cancer Res 69: 1792–1799.

    Article  CAS  Google Scholar 

  • Wise-Draper TM, Morreale RJ, Morris TA, Mintz-Cole RA, Hoskins EE, Balsitis SJ et al. (2009b). DEK proto-oncogene expression interferes with the normal epithelial differentiation program. Am J Pathol 174: 71–81.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Weixia Peng for the initial work of array CGH and Dr Yukihiro Yoshida for the help of clinical data analysis. We thank Dr S Diane Hayward at the Johns Hopkins University for generously providing the CBF1 reporter constructs (4xwtCBF1Luc and 4xmtCBF1Luc). This work was supported in part by Grant-in-Aid for Cancer Research from the Ministry of Health, Labor and Welfare of Japan, a grant from the New Energy and Industrial Technology Development Organization (NEDO), Japan and a grant for the program for promotion of Fundamental Studies in Health Sciences of the National Institute of Biomedical Innovation (NiBio).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Shibata.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shibata, T., Kokubu, A., Miyamoto, M. et al. DEK oncoprotein regulates transcriptional modifiers and sustains tumor initiation activity in high-grade neuroendocrine carcinoma of the lung. Oncogene 29, 4671–4681 (2010). https://doi.org/10.1038/onc.2010.217

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.217

Keywords

This article is cited by

Search

Quick links