Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cell transformation mediated by the Epstein–Barr virus G protein-coupled receptor BILF1 is dependent on constitutive signaling

Abstract

Epstein–Barr virus (EBV) open reading frame BILF1 encodes a seven trans-membrane (TM) G protein-coupled receptor that signals with high constitutive activity through Gαi (Beisser et al., 2005; Paulsen et al., 2005). In this paper, the transforming potential of BILF1 is investigated in vitro in a foci formation assay using retrovirally transduced NIH3T3 cells, as well as in vivo by using nude mice. BILF1 revealed a substantial transforming potential that was dependent on constitutive signaling, as a signaling-deficient mutant completely lost its ability to transform cells in vitro, and an intermediately active triple-mutated receptor possessed an intermediate transforming potential. Furthermore, BILF1 expression induced vascular endothelial growth factor secretion in a constitutively active manner. In nude mice, BILF1 promoted tumor formation in 90% of cases, ORF74 (from Kaposi's sarcoma-associated herpes virus) in 100% of cases, whereas the signaling-deficient receptor resulted in tumor establishment in 40% of cases. These data suggest that BILF1, when expressed during EBV infection, could indeed be involved in the pathogenesis of EBV-associated diseases and malignancies. Furthermore, the correlation between receptor activity and the ability to mediate cell transformation in vitro and tumor formation in vivo supports the idea that inverse agonists for BILF1 could inhibit cell transformation and be relevant therapeutic candidates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Arvanitakis L, Geras-Raaka E, Varma A, Gershengorn MC, Cesarman E . (1997). Human herpesvirus KSHV encodes a constitutively active G-protein-coupled receptor linked to cell proliferation. Nature 385: 347–350.

    Article  CAS  Google Scholar 

  • Bais C, Santomasso B, Coso O, Arvanitakis L, Raaka EG, Gutkind JS et al. (1998). G-protein-coupled receptor of Kaposi's sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator. Nature 391: 86–89.

    Article  CAS  Google Scholar 

  • Beisser PS, Grauls G, Bruggeman CA, Vink C . (1999). Deletion of the R78 G protein-coupled receptor gene from rat cytomegalovirus results in an attenuated, syncytium-inducing mutant strain. J Virol 73: 7218–7230.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beisser PS, Verzijl D, Gruijthuijsen YK, Beuken E, Smit MJ, Leurs R et al. (2005). The Epstein-Barr virus BILF1 gene encodes a G protein-coupled receptor that inhibits phosphorylation of RNA-dependent protein kinase. J Virol 79: 441–449.

    Article  CAS  Google Scholar 

  • Bodaghi B, Jones TR, Zipeto D, Vita C, Sun L, Laurent L et al. (1998). Chemokine sequestration by viral chemoreceptors as a novel viral escape strategy: withdrawal of chemokines from the environment of cytomegalovirus-infected cells. J Exp Med 188: 855–866.

    Article  CAS  Google Scholar 

  • Burger M, Burger JA, Hoch RC, Oades Z, Takamori H, Schraufstatter IU . (1999). Point mutation causing constitutive signaling of CXCR2 leads to transforming activity similar to Kaposi's sarcoma herpesvirus-G protein-coupled receptor. J Immunol 163: 2017–2022.

    CAS  PubMed  Google Scholar 

  • Cesarman E, Mesri EA, Gershengorn MC . (2000). Viral G protein-coupled receptor and Kaposi's sarcoma: a model of paracrine neoplasia? J Exp Med 191: 417–422.

    Article  CAS  Google Scholar 

  • Davis-Poynter NJ, Lynch DM, Vally H, Shellam GR, Rawlinson WD, Barrell BG et al. (1997). Identification and characterization of a G protein-coupled receptor homolog encoded by murine cytomegalovirus. J Virol 71: 1521–1529.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Geras-Raaka E, Varma A, Clark-Lewis I, Gershengorn MC . (1998a). Kaposi's sarcoma-associated herpesvirus (KSHV) chemokine vMIP-II and human SDF-1alpha inhibit signaling by KSHV G protein-coupled receptor. Biochem Biophys Res Commun 253: 725–727.

    Article  CAS  Google Scholar 

  • Geras-Raaka E, Varma A, Ho H, Clark-Lewis I, Gershengorn MC . (1998b). Human interferon-gamma-inducible protein 10 (IP-10) inhibits constitutive signaling of Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor. J Exp Med 188: 405–408.

    Article  CAS  Google Scholar 

  • Greulich H, Chen TH, Feng W, Janne PA, Alvarez JV, Zappaterra M et al. (2005). Oncogenic transformation by inhibitor-sensitive and -resistant EGFR mutants. PLoS Med 2: e313.

    Article  Google Scholar 

  • Ho HH, Ganeshalingam N, Rosenhouse-Dantsker A, Osman R, Gershengorn MC . (2001). Charged residues at the intracellular boundary of transmembrane helices 2 and 3 independently affect constitutive activity of Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor. J Biol Chem 276: 1376–1382.

    Article  CAS  Google Scholar 

  • Hong GK, Gulley ML, Feng WH, Delecluse HJ, Holley-Guthrie E, Kenney SC . (2005a). Epstein-Barr virus lytic infection contributes to lymphoproliferative disease in a SCID mouse model. J Virol 79: 13993–14003.

    Article  CAS  Google Scholar 

  • Hong GK, Kumar P, Wang L, Damania B, Gulley ML, Delecluse HJ et al. (2005b). Epstein-Barr virus lytic infection is required for efficient production of the angiogenesis factor vascular endothelial growth factor in lymphoblastoid cell lines. J Virol 79: 13984–13992.

    Article  CAS  Google Scholar 

  • Kieff ED, Rickinson AB . (2007). Epstein-Barr virus and its replication. In: Knipe DM, Howley PM (eds). Fields Virology. Lippencott Williams & Wilkins: Philadelphia, pp 2603–2654.

    Google Scholar 

  • Kledal TN, Rosenkilde MM, Schwartz TW . (1998). Selective recognition of the membrane-bound CX3C chemokine, fractalkine, by the human cytomegalovirus-encoded broad-spectrum receptor US28. FEBS Lett 441: 209–214.

    Article  CAS  Google Scholar 

  • Krishna SM, James S, Balaram P . (2006). Expression of VEGF as prognosticator in primary nasopharyngeal cancer and its relation to EBV status. Virus Res 115: 85–90.

    Article  CAS  Google Scholar 

  • Maussang D, Verzijl D, van WM, Leurs R, Holl J, Pleskoff O et al. (2006). Human cytomegalovirus-encoded chemokine receptor US28 promotes tumorigenesis. Proc Natl Acad Sci USA 103: 13068–13073.

    Article  CAS  Google Scholar 

  • McLean KA, Holst PJ, Martini L, Schwartz TW, Rosenkilde MM . (2004). Similar activation of signal transduction pathways by the herpesvirus-encoded chemokine receptors US28 and ORF74. Virology 325: 241–251.

    Article  CAS  Google Scholar 

  • Mirzadegan T, Benko G, Filipek S, Palczewski K . (2003). Sequence analyses of G-protein-coupled receptors: similarities to rhodopsin. Biochemistry 42: 2759–2767.

    Article  CAS  Google Scholar 

  • Montaner S, Sodhi A, Molinolo A, Bugge TH, Sawai ET, He Y et al. (2003). Endothelial infection with KSHV genes in vivo reveals that vGPCR initiates Kaposi's sarcomagenesis and can promote the tumorigenic potential of viral latent genes. Cancer Cell 3: 23–36.

    Article  CAS  Google Scholar 

  • Montone KT, Hodinka RL, Salhany KE, Lavi E, Rostami A, Tomaszewski JE . (1996). Identification of Epstein-Barr virus lytic activity in post-transplantation lymphoproliferative disease. Mod Pathol 9: 621–630.

    CAS  PubMed  Google Scholar 

  • Murono S, Inoue H, Tanabe T, Joab I, Yoshizaki T, Furukawa M et al. (2001). Induction of cyclooxygenase-2 by Epstein-Barr virus latent membrane protein 1 is involved in vascular endothelial growth factor production in nasopharyngeal carcinoma cells. Proc Natl Acad Sci USA 98: 6905–6910.

    Article  CAS  Google Scholar 

  • O'Neil JD, Owen TJ, Wood VH, Date KL, Valentine R, Chukwuma MB et al. (2008). Epstein-Barr virus-encoded EBNA1 modulates the AP-1 transcription factor pathway in nasopharyngeal carcinoma cells and enhances angiogenesis in vitro. J Gen Virol 89: 2833–2842.

    Article  CAS  Google Scholar 

  • Pallesen G, Hamilton-Dutoit SJ, Rowe M, Young LS . (1991). Expression of Epstein-Barr virus latent gene products in tumour cells of Hodgkin's disease. Lancet 337: 320–322.

    Article  CAS  Google Scholar 

  • Pati S, Cavrois M, Guo HG, Foulke Jr JS, Kim J, Feldman RA et al. (2001). Activation of NF-kappaB by the human herpesvirus 8 chemokine receptor ORF74: evidence for a paracrine model of Kaposi's sarcoma pathogenesis. J Virol 75: 8660–8673.

    Article  CAS  Google Scholar 

  • Paulsen SJ, Rosenkilde MM, Eugen-Olsen J, Kledal TN . (2005). Epstein-Barr virus-encoded BILF1 is a constitutively active G protein-coupled receptor. J Virol 79: 536–546.

    Article  CAS  Google Scholar 

  • Paydas S, Ergin M, Erdogan S, Seydaoglu G . (2008). Prognostic significance of EBV-LMP1 and VEGF-A expressions in non-Hodgkin's lymphomas. Leuk Res 32: 1424–1430.

    Article  CAS  Google Scholar 

  • Pleskoff O, Casarosa P, Verneuil L, Ainoun F, Beisser P, Smit M et al. (2005). The human cytomegalovirus-encoded chemokine receptor US28 induces caspase-dependent apoptosis. FEBS J 272: 4163–4177.

    Article  CAS  Google Scholar 

  • Rajagopal K, Lefkowitz RJ, Rockman HA . (2005). When 7 transmembrane receptors are not G protein-coupled receptors. J Clin Invest 115: 2971–2974.

    Article  CAS  Google Scholar 

  • Rosenkilde MM, Kledal TN . (2006). Targeting herpesvirus reliance of the chemokine system. Curr Drug Targets 7: 103–118.

    Article  CAS  Google Scholar 

  • Rosenkilde MM, Kledal TN, Brauner-Osborne H, Schwartz TW . (1999). Agonists and inverse agonists for the herpesvirus 8-encoded constitutively active seven-transmembrane oncogene product, ORF-74. J Biol Chem 274: 956–961.

    Article  CAS  Google Scholar 

  • Rosenkilde MM, Kledal TN, Schwartz TW . (2005). High constitutive activity of a virus-encoded seven transmembrane receptor in the absence of the conserved DRY motif (Asp-Arg-Tyr) in transmembrane helix 3. Mol Pharmacol 68: 11–19.

    CAS  PubMed  Google Scholar 

  • Rosenkilde MM, ned-Jensen T, Andersen H, Holst PJ, Kledal TN, Luttichau HR et al. (2006). Molecular pharmacological phenotyping of EBI2. An orphan seven-transmembrane receptor with constitutive activity. J Biol Chem 281: 13199–13208.

    Article  CAS  Google Scholar 

  • Rosenkilde MM, Smit MJ, Waldhoer M . (2008). Structure, function and physiological consequences of virally encoded chemokine seven transmembrane receptors. Br J Pharmacol 153 (Suppl 1): S154–S166.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarz M, Murphy PM . (2001). Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor constitutively activates NF-kappa B and induces proinflammatory cytokine and chemokine production via a C-terminal signaling determinant. J Immunol 167: 505–513.

    Article  CAS  Google Scholar 

  • Sheng W, Decaussin G, Ligout A, Takada K, Ooka T . (2003). Malignant transformation of Epstein-Barr virus-negative Akata cells by introduction of the BARF1 gene carried by Epstein-Barr virus. J Virol 77: 3859–3865.

    Article  Google Scholar 

  • Smit MJ, Verzijl D, Casarosa P, Navis M, Timmerman H, Leurs R . (2002). Kaposi's sarcoma-associated herpesvirus-encoded G protein-coupled receptor ORF74 constitutively activates p44'p42 MAPK and Akt via G(i) and phospholipase C-dependent signaling pathways. J Virol 76: 1744–1752.

    Article  CAS  Google Scholar 

  • Sodhi A, Montaner S, Patel V, Zohar M, Bais C, Mesri EA et al. (2000). The Kaposi's sarcoma-associated herpes virus G protein-coupled receptor up-regulates vascular endothelial growth factor expression and secretion through mitogen-activated protein kinase and p38 pathways acting on hypoxia-inducible factor 1alpha. Cancer Res 60: 4873–4880.

    CAS  Google Scholar 

  • Streblow DN, Vomaske J, Smith P, Melnychuk R, Hall L, Pancheva D et al. (2003). Human cytomegalovirus chemokine receptor US28-induced smooth muscle cell migration is mediated by focal adhesion kinase and Src. J Biol Chem 278: 50456–50465.

    Article  CAS  Google Scholar 

  • Vieira J, Schall TJ, Corey L, Geballe AP . (1998). Functional analysis of the human cytomegalovirus US28 gene by insertion mutagenesis with the green fluorescent protein gene. J Virol 72: 8158–8165.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vischer HF, Nijmeijer S, Smit MJ, Leurs R . (2008). Viral hijacking of human receptors through heterodimerization. Biochem Biophys Res Commun 377: 93–97.

    Article  CAS  Google Scholar 

  • Waldhoer M, Kledal TN, Farrell H, Schwartz TW . (2002). Murine cytomegalovirus (CMV) M33 and human CMV US28 receptors exhibit similar constitutive signaling activities. J Virol 76: 8161–8168.

    Article  CAS  Google Scholar 

  • Walling DM, Flaitz CM, Nichols CM . (2003). Epstein-Barr virus replication in oral hairy leukoplakia: response, persistence, and resistance to treatment with valacyclovir. J Infect Dis 188: 883–890.

    Article  CAS  Google Scholar 

  • Xue SA, Labrecque LG, Lu QL, Ong SK, Lampert IA, Kazembe P et al. (2002). Promiscuous expression of Epstein-Barr virus genes in Burkitt's lymphoma from the central African country Malawi. Int J Cancer 99: 635–643.

    Article  CAS  Google Scholar 

  • Yang TY, Chen SC, Leach MW, Manfra D, Homey B, Wiekowski M et al. (2000). Transgenic expression of the chemokine receptor encoded by human herpesvirus 8 induces an angioproliferative disease resembling Kaposi's sarcoma. J Exp Med 191: 445–454.

    Article  CAS  Google Scholar 

  • Zuo J, Currin A, Griffin BD, Shannon-Lowe C, Thomas WA, Ressing ME et al. (2009). The Epstein-Barr virus G-protein-coupled receptor contributes to immune evasion by targeting MHC class I molecules for degradation. PLoS Pathog 5: e1000255.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Anne Olsen (DTU-Nanotech) for excellent technical assistance and to Claus Sternberg (DTU, Institute for System Biology) for help with FACS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T N Kledal.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyngaa, R., Nørregaard, K., Kristensen, M. et al. Cell transformation mediated by the Epstein–Barr virus G protein-coupled receptor BILF1 is dependent on constitutive signaling. Oncogene 29, 4388–4398 (2010). https://doi.org/10.1038/onc.2010.173

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.173

Keywords

This article is cited by

Search

Quick links