Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

The G1556S-type tuberin variant suppresses tumor formation in tuberous sclerosis 2 mutant (Eker) rats despite its deficiency in mTOR inhibition

Abstract

Tuberin, a tumor-suppressor protein produced by the tuberous sclerosis gene TSC2, downregulates the Rheb-mTOR-S6K pathway (mTOR axis). Comparison of the effects of human tuberin mutations, such as G1556S, suggests that pathways other than the mTOR axis might also be involved in the pathogenesis of tuberous sclerosis. Here we test this possibility using the rat G1556S-type mutation (GSM) and a transgenic Eker (Tsc2 mutant) rat system. Cells expressing GSM-tuberin failed to downregulate the mTOR axis. GSM-tuberin had an altered localization, which underlie its reduced ability to form a complex with hamartin, and a site-specific alteration in phosphorylation status indicating diverse regulation by Akt. GSM-transgenic (GSM-Tg) rats exhibited suppression of macroscopic renal tumors following N-ethyl-N-nitrosourea treatment. Intriguingly, rats with weaker GSM-Tg expression showed microscopic cystic and pre-tumorous lesions that were restricted in size and expansion, although they had hyper-phosphorylation of ribosomal protein S6. These results highlight a novel pathway involving tuberin that regulates tumor suppression independently of the mTOR inhibitory function. Identification of such a novel pathway will provide clear implications for generation of new therapeutic targets in the treatment of these tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Aicher LD, Campbell JS, Yeung RS . (2001). Tuberin phosphorylation regulates its interaction with hamartin. Two proteins involved in tuberous sclerosis. J Biol Chem 276: 21017–21021.

    Article  CAS  PubMed  Google Scholar 

  • Astrinidis A, Henske EP . (2005). Tuberous sclerosis complex: linking growth and energy signaling pathways with human disease. Oncogene 24: 7475–7481.

    Article  CAS  PubMed  Google Scholar 

  • Bissler JJ, McCormack FX, Young LR, Elwing JM, Chuck G, Leonard JM et al. (2008). Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis. N Engl J Med 358: 140–151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dan HC, Sun M, Yang L, Feldman RI, Sui XM, Ou CC et al. (2002). Phosphatidylinositol 3-kinase/Akt pathway regulates tuberous sclerosis tumor suppressor complex by phosphorylation of tuberin. J Biol Chem 277: 35364–35370.

    Article  CAS  PubMed  Google Scholar 

  • Dancey JE, Chen HX . (2006). Strategies for optimizing combinations of molecularly targeted anticancer agents. Nat Rev Drug Discov 5: 649–659.

    Article  CAS  PubMed  Google Scholar 

  • Davies DM, Johnson SR, Tattersfield AE, Kingswood JC, Cox JA, McCartney DL et al. (2008). Sirolimus therapy in tuberous sclerosis or sporadic lymphangioleiomyomatosis. N Engl J Med 358: 200–203.

    Article  CAS  PubMed  Google Scholar 

  • Easton JB, Houghton PJ . (2006). mTOR and cancer therapy. Oncogene 25: 6436–6446.

    Article  CAS  PubMed  Google Scholar 

  • Eker R, Mossige J . (1961). A dominant gene for renal adenomas in the rat. Nature 189: 858–859.

    Article  Google Scholar 

  • Fabian MA, Biggs III WH, Treiber DK, Atteridge CE, Azimioara MD, Benedetti MG et al. (2005). A small molecule-kinase interaction map for clinical kinase inhibitors. Nat Biotechnol 23: 329–336.

    Article  CAS  PubMed  Google Scholar 

  • Faivre S, Kroemer G, Raymond E . (2006). Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov 5: 671–688.

    Article  CAS  PubMed  Google Scholar 

  • Franz DN, Leonard J, Tudor C, Chuck G, Care M, Sethuraman G et al. (2006). Rapamycin causes regression of astrocytomas in tuberous sclerosis complex. Ann Neurol 59: 490–498.

    Article  CAS  PubMed  Google Scholar 

  • Fukuda T, Hirayama Y, Mitani H, Maeda H, Tsutsumi M, Konishi Y et al. (1998). Generation of metastatic variants of Eker renal carcinoma cell lines for experimental investigation of renal cancer metastasis. Jpn J Cancer Res 89: 1104–1108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez MR, Sampson JR, Whittemore VH . (1999). Tuberous Sclerosis Complex. Oxford University Press: New York.

    Google Scholar 

  • Granville CA, Memmott RM, Gills JJ, Dennis PA . (2006). Handicapping the race to develop inhibitors of the phosphoinositide 3-kinase/Akt/mammalian target of rapamycin pathway. Clin Cancer Res 12: 679–689.

    Article  CAS  PubMed  Google Scholar 

  • Guertin DA, Sabatini DM . (2007). Defining the role of mTOR in cancer. Cancer Cell 12: 9–22.

    Article  CAS  PubMed  Google Scholar 

  • Hino O, Klein-Szanto AJ, Freed JJ, Testa JR, Brown DQ, Vilensky M et al. (1993a). Spontaneous and radiation-induced renal tumors in the Eker rat model of dominantly inherited cancer. Proc Natl Acad Sci USA 90: 327–331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hino O, Kobayashi T, Tsuchiya H, Kikuchi Y, Kobayashi E, Mitani H et al. (1994). The predisposing gene of the Eker rat inherited cancer syndrome is tightly linked to the tuberous sclerosis (TSC2) gene. Biochem Biophys Res Commun 203: 1302–1308.

    Article  CAS  PubMed  Google Scholar 

  • Hino O, Mitani H, Knudson AG . (1993b). Genetic predisposition to transplacentally induced renal cell carcinomas in the Eker rat. Cancer Res 53: 5856–5858.

    CAS  PubMed  Google Scholar 

  • Inoki K, Li Y, Zhu T, Wu J, Guan KL . (2002). TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 4: 648–657.

    Article  CAS  PubMed  Google Scholar 

  • Jansen AC, Sancak O, D'Agostino MD, Badhwar A, Roberts P, Gobbi G et al. (2006). Unusually mild tuberous sclerosis phenotype is associated with TSC2 R905Q mutation. Ann Neurol 60: 528–539.

    Article  CAS  PubMed  Google Scholar 

  • Kenerson H, Dundon TA, Yeung RS . (2005). Effects of rapamycin in the Eker rat model of tuberous sclerosis complex. Pediatr Res 57: 67–75.

    Article  CAS  PubMed  Google Scholar 

  • Kenerson HL, Aicher LD, True LD, Yeung RS . (2002). Activated mammalian target of rapamycin pathway in the pathogenesis of tuberous sclerosis complex renal tumors. Cancer Res 62: 5645–5650.

    CAS  PubMed  Google Scholar 

  • Kobayashi T, Adachi H, Mitani H, Hirayama Y, Hino O . (2003). Toward chemotherapy for Tsc2 mutant renal tumor. Proc Jpn Acad 79: 22–25.

    Article  CAS  Google Scholar 

  • Kobayashi T, Hirayama Y, Kobayashi E, Kubo Y, Hino O . (1995). A germline insertion in the tuberous sclerosis (Tsc2) gene gives rise to the Eker rat model of dominantly inherited cancer. Nat Genet 9: 70–74.

    Article  PubMed  Google Scholar 

  • Kobayashi T, Mitani H, Takahashi R, Hirabayashi M, Ueda M, Tamura H et al. (1997). Transgenic rescue from embryonic lethality and renal carcinogenesis in the Eker rat model by introduction of a wild-type Tsc2 gene. Proc Natl Acad Sci USA 94: 3990–3993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwiatkowski DJ, Zhang H, Bandura JL, Heiberger KM, Glogauer M, el-Hashemite N et al. (2002). A mouse model of TSC1 reveals sex-dependent lethality from liver hemangiomas, and up-regulation of p70S6 kinase activity in Tsc1 null cells. Hum Mol Genet 11: 525–534.

    Article  CAS  PubMed  Google Scholar 

  • Lee L, Sudentas P, Dabora SL . (2006). Combination of a rapamycin analog (CCI-779) and interferon-gamma is more effective than single agents in treating a mouse model of tuberous sclerosis complex. Genes Chromosomes Cancer 45: 933–944.

    Article  PubMed  Google Scholar 

  • Lee L, Sudentas P, Donohue B, Asrican K, Worku A, Walker V et al. (2005). Efficacy of a rapamycin analog (CCI-779) and IFN-gamma in tuberous sclerosis mouse models. Genes Chromosomes Cancer 42: 213–227.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Corradetti MN, Inoki K, Guan KL . (2004). TSC2: filling the GAP in the mTOR signaling pathway. Trends Biochem Sci 29: 32–38.

    Article  PubMed  Google Scholar 

  • Manning BD, Cantley LC . (2003). Rheb fills a GAP between TSC and TOR. Trends Biochem Sci 28: 573–576.

    Article  CAS  PubMed  Google Scholar 

  • Manning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC . (2002). Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell 10: 151–162.

    Article  CAS  PubMed  Google Scholar 

  • Martin DE, Hall MN . (2005). The expanding TOR signaling network. Curr Opin Cell Biol 17: 158–166.

    Article  CAS  PubMed  Google Scholar 

  • Mayer K, Goedbloed M, van Zijl K, Nellist M, Rott HD . (2004). Characterisation of a novel TSC2 missense mutation in the GAP-related domain associated with minimal clinical manifestations of tuberous sclerosis. J Med Genet 41: e64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Momose S, Kobayashi T, Mitani H, Hirabayashi M, Ito K, Ueda M et al. (2002). Identification of the coding sequences responsible for Tsc2-mediated tumor suppression using a transgenic rat system. Hum Mol Genet 11: 2997–3006.

    Article  CAS  PubMed  Google Scholar 

  • Nellist M, Sancak O, Goedbloed MA, Rohe C, van Netten D, Mayer K et al. (2005). Distinct effects of single amino-acid changes to tuberin on the function of the tuberin-hamartin complex. Eur J Hum Genet 13: 59–68.

    Article  CAS  PubMed  Google Scholar 

  • Nellist M, Verhaaf B, Goedbloed MA, Reuser AJ, van den Ouweland AM, Halley DJ . (2001). TSC2 missense mutations inhibit tuberin phosphorylation and prevent formation of the tuberin-hamartin complex. Hum Mol Genet 10: 2889–2898.

    Article  CAS  PubMed  Google Scholar 

  • Niida Y, Lawrence-Smith N, Banwell A, Hammer E, Lewis J, Beauchamp RL et al. (1999). Analysis of both TSC1 and TSC2 for germline mutations in 126 unrelated patients with tuberous sclerosis. Hum Mutat 14: 412–422.

    Article  CAS  PubMed  Google Scholar 

  • O'Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D et al. (2006). mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res 66: 1500–1508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah OJ, Hunter T . (2004). Critical role of T-loop and H-motif phosphorylation in the regulation of S6 kinase 1 by the tuberous sclerosis complex. J Biol Chem 279: 20816–20823.

    Article  CAS  PubMed  Google Scholar 

  • Sun GD, Kobayashi T, Abe M, Tada N, Adachi H, Shiota A et al. (2007). The endoplasmic reticulum stress-inducible protein Niban regulates eIF2alpha and S6K1/4E-BP1 phosphorylation. Biochem Biophys Res Commun 360: 181–187.

    Article  CAS  PubMed  Google Scholar 

  • Yeung RS, Xiao GH, Jin F, Lee WC, Testa JR, Knudson AG . (1994). Predisposition to renal carcinoma in the Eker rat is determined by germ-line mutation of the tuberous sclerosis 2 (TSC2) gene. Proc Natl Acad Sci USA 91: 11413–11416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by a Grant-in-aid for Cancer Research from the Ministry of Education, Culture, Sports, Science and Technology and Grants-in-Aid for Scientific Research from Japan Society for the Promotion of Science and the Ministry of Health, Labour and Welfare of Japan. We also thank Ms N Otsuji (Department of Pathology and Oncology), Mr R Tsukada, Mr F Kanai, Ms T Hidano (Center for Biomedical Research Resources), Mr M Yoshida, Mr J Nakamoto (Division of Ultrastructural Research), Mr Y Watanabe, Mr K Matsunami, Ms K Ochiai (Division of Radioisotope Research), Dr T Fujimura (Division of Proteomics and BioMolecular Science), Ms Y Kojima, Dr H Kurihara (Division of Biomedical Imaging Research), Dr T Seki (Department of Developmental Neurobiology), Dr T Ueno and Dr E Kominami (Department of Biochemistry), all of Juntendo University, for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O Hino.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shiono, M., Kobayashi, T., Takahashi, R. et al. The G1556S-type tuberin variant suppresses tumor formation in tuberous sclerosis 2 mutant (Eker) rats despite its deficiency in mTOR inhibition. Oncogene 27, 6690–6697 (2008). https://doi.org/10.1038/onc.2008.283

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.283

Keywords

This article is cited by

Search

Quick links