Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Cotranscriptional splicing regulation: it's not just about speed

Recent data suggest that the C-terminal domain of RNA polymerase II can repress exon inclusion via a mechanism not explained by the prevailing models for cotranscriptional splicing regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Kinetic model for transcription-dependent alternative splicing.
Figure 2: Alternative models for transcription-dependent alternative splicing (diagrammed as in Fig. 1.

References

  1. Matlin, A.J., Clark, F. & Smith, C.W. Nat. Rev. Mol. Cell Biol. 6, 386–398 (2005).

    Article  CAS  Google Scholar 

  2. Kornblihtt, A.R., de la Mata, M., Fededa, J.P., Munoz, M.J. & Nogues, G. RNA 10, 1489–1498 (2004).

    Article  CAS  Google Scholar 

  3. Bentley, D.L. Curr. Opin. Cell Biol. 17, 251–256 (2005).

    Article  CAS  Google Scholar 

  4. Hicks, M.J., Yang, C.R., Kotlajich, M.V. & Hertel, K.J. PLoS Biol. 4, e147 (2006).

    Article  Google Scholar 

  5. Das, R. et al. Genes Dev. 20, 1100–1109 (2006).

    Article  CAS  Google Scholar 

  6. de la Mata, M. & Kornblihtt, A.R. Nat. Struct. Mol. Biol. 13, 973–980 (2006).

    Article  CAS  Google Scholar 

  7. Kadener, S. et al. EMBO J. 20, 5759–5768 (2001).

    Article  CAS  Google Scholar 

  8. Listerman, I., Sapra, A.K. & Neugebauer, K.M. Nat. Struct. Mol. Biol. 13, 815–822 (2006).

    Article  CAS  Google Scholar 

  9. Batsche, E., Yaniv, M. & Muchardt, C. Nat. Struct. Mol. Biol. 13, 22–29 (2006).

    Article  CAS  Google Scholar 

  10. Yuryev, A. et al. Proc. Natl. Acad. Sci. USA 93, 6975–6980 (1996).

    Article  CAS  Google Scholar 

  11. Morris, D.P. & Greenleaf, A.L. J. Biol. Chem. 275, 39935–39943 (2000).

    Article  CAS  Google Scholar 

  12. Rosonina, E. et al. Mol. Cell. Biol. 25, 6734–6746 (2005).

    Article  CAS  Google Scholar 

  13. Buratowski, S. Nat. Struct. Biol. 10, 679–680 (2003).

    Article  CAS  Google Scholar 

  14. Neugebauer, K.M. J. Cell Sci. 115, 3865–3871 (2002).

    Article  CAS  Google Scholar 

  15. Cramer, P. et al. Mol. Cell 4, 251–258 (1999).

  16. McCracken, S. et al. Nature 385, 357–361 (1997).

    Article  CAS  Google Scholar 

  17. Sato, S. et al. Mol. Cell 14, 685–691 (2004).

    Article  CAS  Google Scholar 

  18. Chou, M.Y., Underwood, J.G., Nikolic, J., Luu, M.H. & Black, D.L. Mol. Cell 5, 949–957 (2000).

    Article  CAS  Google Scholar 

  19. House, A.E. & Lynch, K.W. Nat. Struct. Mol. Biol. 13, 937–944 (2006).

    Article  CAS  Google Scholar 

  20. Zeng, C. & Berget, S.M. Mol. Cell. Biol. 20, 8290–8301 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lynch, K. Cotranscriptional splicing regulation: it's not just about speed. Nat Struct Mol Biol 13, 952–953 (2006). https://doi.org/10.1038/nsmb1106-952

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1106-952

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing