Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RNA polymerase II C-terminal domain mediates regulation of alternative splicing by SRp20

Abstract

Previous studies have linked the C-terminal domain (CTD) of RNA polymerase II (pol II) with cotranscriptional precursor messenger RNA processing, but little is known about the CTD's function in regulating alternative splicing. We have examined this function using α-amanitin–resistant pol II CTD mutants and fibronectin reporter minigenes. We found that the CTD is required for the inhibitory action of the serine/arginine-rich (SR) protein SRp20 on the inclusion of a fibronectin cassette exon in the mature mRNA. CTD phosphorylation controls transcription elongation, which is a major contributor to alternative splicing regulation. However, the effect of SRp20 is still observed when transcription elongation is reduced. These results suggest that the CTD promotes exon skipping by recruiting SRp20 and that this contributes independently of elongation to the transcriptional control of alternative splicing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ΔCTD pol II increases EDI inclusion levels independently of the promoter.
Figure 2: Results from an inducible system show that the CTD deletion's effect on alternative splicing is dependent on transcription by ΔCTD pol II.
Figure 3: The CTD's effect on EDI inclusion depends on its length but not its heptad composition.
Figure 4: SRp20 promotes EDI skipping via the CTD.
Figure 5: Unresponsiveness to siSRp20 is independent of the promoter used and is not a consequence of elevated basal EDI inclusion levels.

Similar content being viewed by others

References

  1. Wetterberg, I., Zhao, J., Masich, S., Wieslander, L. & Skoglund, U. In situ transcription and splicing in the Balbiani ring 3 gene. EMBO J. 20, 2564–2574 (2001).

    Article  CAS  Google Scholar 

  2. Bird, G., Zorio, D.A. & Bentley, D.L. RNA polymerase II carboxy-terminal domain phosphorylation is required for cotranscriptional pre-mRNA splicing and 3′-end formation. Mol. Cell. Biol. 24, 8963–8969 (2004).

    Article  CAS  Google Scholar 

  3. Das, R. et al. Functional coupling of RNAP II transcription to spliceosome assembly. Genes Dev. 20, 1100–1109 (2006).

    Article  CAS  Google Scholar 

  4. Kornblihtt, A.R., de la Mata, M., Fededa, J.P., Munoz, M.J. & Nogues, G. Multiple links between transcription and splicing. RNA 10, 1489–1498 (2004).

    Article  CAS  Google Scholar 

  5. Modrek, B. & Lee, C. A genomic view of alternative splicing. Nat. Genet. 30, 13–19 (2002).

    Article  CAS  Google Scholar 

  6. Johnson, J.M. et al. Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science 302, 2141–2144 (2003).

    Article  CAS  Google Scholar 

  7. Kampa, D. et al. Novel RNAs identified from an in-depth analysis of the transcriptome of human chromosomes 21 and 22. Genome Res. 14, 331–342 (2004).

    Article  CAS  Google Scholar 

  8. Fededa, J.P. et al. A polar mechanism coordinates different regions of alternative splicing within a single gene. Mol. Cell 19, 393–404 (2005).

    Article  CAS  Google Scholar 

  9. Lenasi, T., Peterlin, B.M. & Dovc, P. Distal regulation of alternative splicing by splicing enhancer in equine beta-casein intron 1. RNA 12, 498–507 (2006).

    Article  CAS  Google Scholar 

  10. Morris, D.P. & Greenleaf, A.L. The splicing factor, Prp40, binds the phosphorylated carboxyl-terminal domain of RNA polymerase II. J. Biol. Chem. 275, 39935–39943 (2000).

    Article  CAS  Google Scholar 

  11. Carty, S.M., Goldstrohm, A.C., Sune, C., Garcia-Blanco, M.A. & Greenleaf, A.L. Protein-interaction modules that organize nuclear function: FF domains of CA150 bind the phosphoCTD of RNA polymerase II. Proc. Natl. Acad. Sci. USA 97, 9015–9020 (2000).

    Article  CAS  Google Scholar 

  12. Kim, E., Du, L., Bregman, D.B. & Warren, S.L. Splicing factors associate with hyperphosphorylated RNA polymerase II in the absence of pre-mRNA. J. Cell Biol. 136, 19–28 (1997).

    Article  CAS  Google Scholar 

  13. Mortillaro, M.J. et al. A hyperphosphorylated form of the large subunit of RNA polymerase II is associated with splicing complexes and the nuclear matrix. Proc. Natl. Acad. Sci. USA 93, 8253–8257 (1996).

    Article  CAS  Google Scholar 

  14. Yuryev, A. et al. The C-terminal domain of the largest subunit of RNA polymerase II interacts with a novel set of serine/arginine-rich proteins. Proc. Natl. Acad. Sci. USA 93, 6975–6980 (1996).

    Article  CAS  Google Scholar 

  15. McCracken, S. et al. The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature 385, 357–361 (1997).

    Article  CAS  Google Scholar 

  16. Misteli, T. & Spector, D.L. RNA polymerase II targets pre-mRNA splicing factors to transcription sites in vivo. Mol. Cell 3, 697–705 (1999).

    Article  CAS  Google Scholar 

  17. Du, L. & Warren, S.L. A functional interaction between the carboxy-terminal domain of RNA polymerase II and pre-mRNA splicing. J. Cell Biol. 136, 5–18 (1997).

    Article  CAS  Google Scholar 

  18. Roberts, G.C., Gooding, C., Mak, H.Y., Proudfoot, N.J. & Smith, C.W. Co-transcriptional commitment to alternative splice site selection. Nucleic Acids Res. 26, 5568–5572 (1998).

    Article  CAS  Google Scholar 

  19. Howe, K.J., Kane, C.M. & Ares, M., Jr. Perturbation of transcription elongation influences the fidelity of internal exon inclusion in Saccharomyces cerevisiae. RNA 9, 993–1006 (2003).

    Article  CAS  Google Scholar 

  20. Kadener, S. et al. Antagonistic effects of T-Ag and VP16 reveal a role for RNA pol II elongation on alternative splicing. EMBO J. 20, 5759–5768 (2001).

    Article  CAS  Google Scholar 

  21. Nogues, G., Kadener, S., Cramer, P., Bentley, D. & Kornblihtt, A.R. Transcriptional activators differ in their abilities to control alternative splicing. J. Biol. Chem. 277, 43110–43114 (2002).

    Article  CAS  Google Scholar 

  22. de la Mata, M. et al. A slow RNA polymerase II affects alternative splicing in vivo. Mol. Cell 12, 525–532 (2003).

    Article  CAS  Google Scholar 

  23. Yonaha, M. & Proudfoot, N.J. Specific transcriptional pausing activates polyadenylation in a coupled in vitro system. Mol. Cell 3, 593–600 (1999).

    Article  CAS  Google Scholar 

  24. Listerman, I., Sapra, A.K. & Neugebauer, K.M. Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells. Nat. Struct. Mol. Biol. 13, 815–822 (2006).

    Article  CAS  Google Scholar 

  25. Bentley, D.L. Rules of engagement: co-transcriptional recruitment of pre-mRNA processing factors. Curr. Opin. Cell Biol. 17, 251–256 (2005).

    Article  CAS  Google Scholar 

  26. Palancade, B. & Bensaude, O. Investigating RNA polymerase II carboxyl-terminal domain (CTD) phosphorylation. Eur. J. Biochem. 270, 3859–3870 (2003).

    Article  CAS  Google Scholar 

  27. Kobor, M.S. & Greenblatt, J. Regulation of transcription elongation by phosphorylation. Biochim. Biophys. Acta 1577, 261–275 (2002).

    Article  CAS  Google Scholar 

  28. Buratowski, S. The CTD code. Nat. Struct. Biol. 10, 679–680 (2003).

    Article  CAS  Google Scholar 

  29. Rosonina, E. & Blencowe, B.J. Analysis of the requirement for RNA polymerase II CTD heptapeptide repeats in pre-mRNA splicing and 3′-end cleavage. RNA 10, 581–589 (2004).

    Article  CAS  Google Scholar 

  30. Bartolomei, M.S., Halden, N.F., Cullen, C.R. & Corden, J.L. Genetic analysis of the repetitive carboxyl-terminal domain of the largest subunit of mouse RNA polymerase II. Mol. Cell. Biol. 8, 330–339 (1988).

    Article  CAS  Google Scholar 

  31. Cramer, P., Pesce, C.G., Baralle, F.E. & Kornblihtt, A.R. Functional association between promoter structure and transcript alternative splicing. Proc. Natl. Acad. Sci. USA 94, 11456–11460 (1997).

    Article  CAS  Google Scholar 

  32. Meininghaus, M., Chapman, R.D., Horndasch, M. & Eick, D. Conditional expression of RNA polymerase II in mammalian cells. Deletion of the carboxyl-terminal domain of the large subunit affects early steps in transcription. J. Biol. Chem. 275, 24375–24382 (2000).

    Article  CAS  Google Scholar 

  33. Gerber, H.P. et al. RNA polymerase II C-terminal domain required for enhancer-driven transcription. Nature 374, 660–662 (1995).

    Article  CAS  Google Scholar 

  34. Gossen, M. & Bujard, H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA 89, 5547–5551 (1992).

    Article  CAS  Google Scholar 

  35. Blau, J. et al. Three functional classes of transcriptional activation domain. Mol. Cell. Biol. 16, 2044–2055 (1996).

    Article  CAS  Google Scholar 

  36. Bochnig, P., Reuter, R., Bringmann, P. & Luhrmann, R. A monoclonal antibody against 2,2,7-trimethylguanosine that reacts with intact, class U, small nuclear ribonucleoproteins as well as with 7-methylguanosine-capped RNAs. Eur. J. Biochem. 168, 461–467 (1987).

    Article  CAS  Google Scholar 

  37. Chapman, R.D., Palancade, B., Lang, A., Bensaude, O. & Eick, D. The last CTD repeat of the mammalian RNA polymerase II large subunit is important for its stability. Nucleic Acids Res. 32, 35–44 (2004).

    Article  CAS  Google Scholar 

  38. Fong, N., Bird, G., Vigneron, M. & Bentley, D.L. A 10 residue motif at the C-terminus of the RNA pol II CTD is required for transcription, splicing and 3′ end processing. EMBO J. 22, 4274–4282 (2003).

    Article  CAS  Google Scholar 

  39. Laurencikiene, J., Kallman, A.M., Fong, N., Bentley, D.L. & Ohman, M. RNA editing and alternative splicing: the importance of co-transcriptional coordination. EMBO Rep. 7, 303–307 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Chapman, R.D., Conrad, M. & Eick, D. Role of the mammalian RNA polymerase II C-terminal domain (CTD) nonconsensus repeats in CTD stability and cell proliferation. Mol. Cell. Biol. 25, 7665–7674 (2005).

    Article  CAS  Google Scholar 

  41. Cramer, P. et al. Coupling of transcription with alternative splicing: RNA pol II promoters modulate SF2/ASF and 9G8 effects on an exonic splicing enhancer. Mol. Cell 4, 251–258 (1999).

    Article  CAS  Google Scholar 

  42. Zeng, C. & Berget, S.M. Participation of the C-terminal domain of RNA polymerase II in exon definition during pre-mRNA splicing. Mol. Cell. Biol. 20, 8290–8301 (2000).

    Article  CAS  Google Scholar 

  43. Fong, N. & Bentley, D.L. Capping, splicing, and 3′ processing are independently stimulated by RNA polymerase II: different functions for different segments of the CTD. Genes Dev. 15, 1783–1795 (2001).

    Article  CAS  Google Scholar 

  44. Komarnitsky, P., Cho, E.J. & Buratowski, S. Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev. 14, 2452–2460 (2000).

    Article  CAS  Google Scholar 

  45. Lux, C. et al. Transition from initiation to promoter proximal pausing requires the CTD of RNA polymerase II. Nucleic Acids Res. 33, 5139–5144 (2005).

    Article  CAS  Google Scholar 

  46. Ryan, K., Murthy, K.G., Kaneko, S. & Manley, J.L. Requirements of the RNA polymerase II C-terminal domain for reconstituting pre-mRNA 3′ cleavage. Mol. Cell. Biol. 22, 1684–1692 (2002).

    Article  CAS  Google Scholar 

  47. Kadener, S., Fededa, J.P., Rosbash, M. & Kornblihtt, A.R. Regulation of alternative splicing by a transcriptional enhancer through RNA pol II elongation. Proc. Natl. Acad. Sci. USA 99, 8185–8190 (2002).

    Article  CAS  Google Scholar 

  48. Park, N.J., Tsao, D.C. & Martinson, H.G. The two steps of poly(A)-dependent termination, pausing and release, can be uncoupled by truncation of the RNA polymerase II carboxyl-terminal repeat domain. Mol. Cell. Biol. 24, 4092–4103 (2004).

    Article  CAS  Google Scholar 

  49. McCracken, S. et al. Role of RNA polymerase II carboxy-terminal domain in coordinating transcription with RNA processing. Cold Spring Harb. Symp. Quant. Biol. 63, 301–309 (1998).

    Article  CAS  Google Scholar 

  50. Sato, S. et al. A set of consensus mammalian mediator subunits identified by multidimensional protein identification technology. Mol. Cell 14, 685–691 (2004).

    Article  CAS  Google Scholar 

  51. Neugebauer, K.M. & Roth, M.B. Distribution of pre-mRNA splicing factors at sites of RNA polymerase II transcription. Genes Dev. 11, 1148–1159 (1997).

    Article  CAS  Google Scholar 

  52. Mabon, S.A. & Misteli, T. Differential recruitment of pre-mRNA splicing factors to alternatively spliced transcripts in vivo. PLoS Biol. 3, e374 (2005).

    Article  Google Scholar 

  53. Smith, C.W. & Valcarcel, J. Alternative pre-mRNA splicing: the logic of combinatorial control. Trends Biochem. Sci. 25, 381–388 (2000).

    Article  CAS  Google Scholar 

  54. Matlin, A.J., Clark, F. & Smith, C.W. Understanding alternative splicing: towards a cellular code. Nat. Rev. Mol. Cell Biol. 6, 386–398 (2005).

    Article  CAS  Google Scholar 

  55. Caputi, M. et al. A novel bipartite splicing enhancer modulates the differential processing of the human fibronectin EDA exon. Nucleic Acids Res. 22, 1018–1022 (1994).

    Article  CAS  Google Scholar 

  56. Elbashir, S.M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    Article  CAS  Google Scholar 

  57. Hanamura, A., Caceres, J.F., Mayeda, A., Franza, B.R., Jr. & Krainer, A.R. Regulated tissue-specific expression of antagonistic pre-mRNA splicing factors. RNA 4, 430–444 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank P. Cramer and D. Bentley for their initial contributions to this work and N. Fong, V. Buggiano, J.P. Fededa, M.J. Muñoz, M. Blaustein, F. Pelisch, E. Petrillo, M. Alló, A. Srebrow and I. Schor for their help and discussions. Special thanks to R. Chapman for helpful criticism as well as for providing reagents. This work was supported by grants from the Fundación Antorchas, the Agencia Nacional de Promoción de Ciencia y Tecnología of Argentina, the European Union Network of Excellence on Alternative Splicing and the University of Buenos Aires. M.d.l.M. is recipient of a fellowship from the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) of Argentina. A.R.K. is a Howard Hughes Medical Institute international research scholar and a career investigator of the CONICET.

Author information

Authors and Affiliations

Authors

Contributions

M.d.l.M. designed, performed and interpreted the experiments. A.R.K. discussed the design and interpretation of experiments and supervised the whole project. The manuscript was cowritten by both authors.

Corresponding author

Correspondence to Alberto R Kornblihtt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

The effect of the CTD on alternative splicing is independent of its influence on capping and 3′-end processing. (PDF 619 kb)

Supplementary Fig. 2

CTD sequences of RPB1 clones. (PDF 59 kb)

Supplementary Methods (PDF 46 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

de la Mata, M., Kornblihtt, A. RNA polymerase II C-terminal domain mediates regulation of alternative splicing by SRp20. Nat Struct Mol Biol 13, 973–980 (2006). https://doi.org/10.1038/nsmb1155

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1155

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing