Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Folding zones inside the ribosomal exit tunnel

Abstract

Helicity of membrane proteins can be manifested inside the ribosome tunnel, but the determinants of compact structure formation inside the tunnel are largely unexplored. Using an extended nascent peptide as a molecular tape measure of the ribosomal tunnel, we have previously demonstrated helix formation inside the tunnel. Here, we introduce a series of consecutive polyalanines into different regions of the tape measure to monitor the formation of compact structure in the nascent peptide. We find that the formation of compact structure of the polyalanine sequence depends on its location. Calculation of free energies for the equilibria between folded and unfolded nascent peptides in different regions of the tunnel shows that there are zones of secondary structure formation inside the ribosomal exit tunnel. These zones may have an active role in nascent-chain compaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The tape measure and substituted polyalanines.
Figure 2: Time course of pegylation.
Figure 3: Fraction of peptide compacted, Fc, calculated using data similar to and including those in Figure 2.
Figure 4: Ala5 chimeras and Gly5 substitutions.
Figure 5: Ribosome contribution to secondary structure folding.

Similar content being viewed by others

References

  1. Ban, N., Nissen, P., Hansen, J., Moore, P.B. & Steitz, T.A. The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 289, 905–920 (2000).

    Article  CAS  Google Scholar 

  2. Nissen, P., Hansen, J., Ban, N., Moore, P.B. & Steitz, T.A. The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920–930 (2000).

    Article  CAS  Google Scholar 

  3. Menetret, J.F. et al. The structure of ribosome-channel complexes engaged in protein translocation. Mol. Cell 6, 1219–1232 (2000).

    Article  CAS  Google Scholar 

  4. Beckmann, R. et al. Architecture of the protein-conducting channel associated with the translating 80S ribosome. Cell 107, 361–372 (2001).

    Article  CAS  Google Scholar 

  5. Mingarro, I., Nilsson, I., Whitley, P. & von Heijne, G. Different conformations of nascent polypeptides during translocation across the ER membrane. BMC Cell Biol. 1, 3 (2000).

    Article  CAS  Google Scholar 

  6. Woolhead, C.A., McCormick, P.J. & Johnson, A.E. Nascent membrane and secretory proteins differ in FRET-detected folding far inside the ribosome and in their exposure to ribosomal proteins. Cell 116, 725–736 (2004).

    Article  CAS  Google Scholar 

  7. Kowarik, M., Kung, S., Martoglio, B. & Helenius, A. Protein folding during cotranslational translocation in the endoplasmic reticulum. Mol. Cell 10, 769–778 (2002).

    Article  CAS  Google Scholar 

  8. Kosolapov, A., Tu, L., Wang, J. & Deutsch, C. Structure acquisition of the T1 domain of Kv1.3 during biogenesis. Neuron 44, 295–307 (2004).

    Article  CAS  Google Scholar 

  9. Hardesty, B. & Kramer, G. Folding of a nascent peptide on the ribosome. Prog. Nucleic Acid Res. Mol. Biol. 66, 41–66 (2001).

    Article  CAS  Google Scholar 

  10. Matlack, K.E. & Walter, P. The 70 carboxyl-terminal amino acids of nascent secretory proteins are protected from proteolysis by the ribosome and the protein translocation apparatus of the endoplasmic reticulum membrane. J. Biol. Chem. 270, 6170–6180 (1995).

    Article  CAS  Google Scholar 

  11. Lu, J. & Deutsch, C. Secondary structure formation of a transmembrane segment in Kv channels. Biochemistry 44, 8230–8243 (2005).

    Article  CAS  Google Scholar 

  12. Lu, J., Robinson, J.M., Edwards, D. & Deutsch, C. T1–T1 interactions occur in ER membranes while nascent Kv peptides are still attached to ribosomes. Biochemistry 40, 10934–10946 (2001).

    Article  CAS  Google Scholar 

  13. Lu, J. & Deutsch, C. Pegylation: a method for assessing topological accessibilities in Kv1.3. Biochemistry 40, 13288–13301 (2001).

    Article  CAS  Google Scholar 

  14. Creighton, T.E. in Proteins, 171–199 (W.H. Freeman and Co., New York, USA, 1993).

    Google Scholar 

  15. O'Neil, K.T. & DeGrado, W.F. A thermodynamic scale for the helix-forming tendencies of the commonly occurring amino acids. Science 250, 646–651 (1990).

    Article  CAS  Google Scholar 

  16. Picking, W.D., Picking, W.L., Odom, O.W. & Hardesty, B. Fluorescence characterization of the environment encountered by nascent polyalanine and polyserine as they exit Escherichia coli ribosomes during translation. Biochemistry 31, 2368–2375 (1992).

    Article  CAS  Google Scholar 

  17. Bernabeu, C. & Lake, J.A. Nascent polypeptide chains emerge from the exit domain of the large ribosomal subunit: immune mapping of the nascent chain. Proc. Natl. Acad. Sci. USA 79, 3111–3115 (1982).

    Article  CAS  Google Scholar 

  18. Wimley, W.C. & White, S.H. Experimentally determined hydrophobicity scales. Stephen White Laboratory Homepagehttp://blanco.biomol.uci.edu/hydrophobicity_scales.html〉 (2002).

    Google Scholar 

  19. Munoz, V. & Serrano, L. Development of the multiple sequence approximation within the AGADIR model of alpha-helix formation: comparison with Zimm-Bragg and Lifson-Roig formalisms. Biopolymers 41, 495–509 (1997).

    Article  CAS  Google Scholar 

  20. Cantor, C.R. & Schimmel, P.R. in Biophysical Chemistry Part III, 1006–1013 (W.H. Freeman and Co., San Francisco, USA, 1980).

    Google Scholar 

  21. Monod, J., Wyman, J. & Changeux, J.P. On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12, 88–118 (1965).

    Article  CAS  Google Scholar 

  22. Berisio, R. et al. Structural insight into the role of the ribosomal tunnel in cellular regulation. Nat. Struct. Biol. 10, 366–370 (2003).

    Article  CAS  Google Scholar 

  23. Gilbert, R.J. et al. Three-dimensional structures of translating ribosomes by Cryo-EM. Mol. Cell 14, 57–66 (2004).

    Article  CAS  Google Scholar 

  24. DeGrado, W.F. & Lear, J.D. Induction of peptide conformation at apolar/water interfaces. 1. A study with model peptides of defined hydrophobic periodicity. J. Am. Chem. Soc. 107, 7684–7689 (1985).

    Article  CAS  Google Scholar 

  25. Liao, S., Lin, J., Do, H. & Johnson, A.E. Both lumenal and cytosolic gating of the aqueous ER translocon pore are regulated from inside the ribosome during membrane protein integration. Cell 90, 31–41 (1997).

    Article  CAS  Google Scholar 

  26. Chan, H.S. & Dill, K.A. A simple model of chaperonin-mediated protein folding. Proteins 24, 345–351 (1996).

    Article  CAS  Google Scholar 

  27. Betancourt, M.R. & Thirumalai, D. Exploring the kinetic requirements for enhancement of protein folding rates in the GroEL cavity. J. Mol. Biol. 287, 627–644 (1999).

    Article  CAS  Google Scholar 

  28. Daggett, V. & Fersht, A.R. Is there a unifying mechanism for protein folding? Trends Biochem. Sci. 28, 18–25 (2003).

    Article  CAS  Google Scholar 

  29. Nakatogawa, H. & Ito, K. The ribosomal exit tunnel functions as a discriminating gate. Cell 108, 629–636 (2002).

    Article  CAS  Google Scholar 

  30. Minton, A.P. Confinement as a determinant of macromolecular structure and reactivity. Biophys. J. 63, 1090–1100 (1992).

    Article  CAS  Google Scholar 

  31. Zhou, H.X. & Dill, K.A. Stabilization of proteins in confined spaces. Biochemistry 40, 11289–11293 (2001).

    Article  CAS  Google Scholar 

  32. Klimov, D.K., Newfield, D. & Thirumalai, D. Simulations of beta-hairpin folding confined to spherical pores using distributed computing. Proc. Natl. Acad. Sci. USA 99, 8019–8024 (2002).

    Article  CAS  Google Scholar 

  33. Takagi, F., Koga, N. & Takada, S. How protein thermodynamics and folding mechanisms are altered by the chaperonin cage: molecular simulations. Proc. Natl. Acad. Sci. USA 100, 11367–11372 (2003).

    Article  CAS  Google Scholar 

  34. Snir, Y. & Kamien, R.D. Entropically driven helix formation. Science 307, 1067 (2005).

    Article  CAS  Google Scholar 

  35. Kosolapov, A. & Deutsch, C. Folding of the voltage-gated K+ channel T1 recognition domain. J. Biol. Chem. 278, 4305–4313 (2003).

    Article  CAS  Google Scholar 

  36. Robinson, J.M. & Deutsch, C. Coupled tertiary folding and oligomerization of the T1 Domain of Kv channels. Neuron 45, 223–232 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S.W. Englander, L. Mayne and R. Horn for helpful discussions and insights. We thank S. White, R. Horn, A. Kosolapov and J. Lear for critical reading of the manuscript. This work was supported by US National Institutes of Health Grant GM 52302.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol Deutsch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Pegylated Cys64 tape measure is ribosome-attached (PDF 93 kb)

Supplementary Table 1

Final extents and rate constants of alanine-containing peptides. (DOC 22 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, J., Deutsch, C. Folding zones inside the ribosomal exit tunnel. Nat Struct Mol Biol 12, 1123–1129 (2005). https://doi.org/10.1038/nsmb1021

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1021

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing