Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A U1 snRNP–specific assembly pathway reveals the SMN complex as a versatile hub for RNP exchange

Abstract

Despite equal snRNP stoichiometry in spliceosomes, U1 snRNP (U1) is typically the most abundant vertebrate snRNP. Mechanisms regulating U1 overabundance and snRNP repertoire are unknown. In Sm-core assembly, a key snRNP-biogenesis step mediated by the SMN complex, the snRNA-specific RNA-binding protein (RBP) Gemin5 delivers pre-snRNAs, which join SMN–Gemin2–recruited Sm proteins. We show that the human U1-specific RBP U1-70K can bridge pre-U1 to SMN–Gemin2–Sm, in a Gemin5-independent manner, thus establishing an additional and U1-exclusive Sm core–assembly pathway. U1-70K hijacks SMN–Gemin2–Sm, enhancing Sm-core assembly on U1s and inhibiting that on other snRNAs, thereby promoting U1 overabundance and regulating snRNP repertoire. SMN–Gemin2's ability to facilitate transactions between different RBPs and RNAs explains its multi-RBP valency and the myriad transcriptome perturbations associated with SMN deficiency in neurodegenerative spinal muscular atrophy. We propose that SMN–Gemin2 is a versatile hub for RNP exchange that functions broadly in RNA metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The U1 snRNP–specific stem-loop 1–binding protein U1-70K bridges pre-U1 or U1 snRNA to the SMN complex independently of Gemin5.
Figure 2: U1-70K enhances Sm-core assembly on U1 and inhibits that on other snRNAs in vitro, and regulates the snRNP repertoire in cells.
Figure 3: U1-70K bridges pre-U1 snRNA to SMN and mediates preferential Sm-core assembly on U1 snRNA rather than on other snRNAs.
Figure 4: SMN–Gemin2 cooperates with U1-70K in Sm-protein recruitment.
Figure 5: Schematic representation of SMN–Gemin2's function as a versatile hub for RNP exchange.

Similar content being viewed by others

References

  1. Mount, S.M., Pettersson, I., Hinterberger, M., Karmas, A. & Steitz, J.A. The U1 small nuclear RNA-protein complex selectively binds a 5′ splice site in vitro . Cell 33, 509–518 (1983).

    CAS  PubMed  Google Scholar 

  2. Will, C.L. & Lührmann, R. Spliceosome structure and function. Cold Spring Harb. Perspect. Biol. 3, a003707 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Berg, M.G. et al. U1 snRNP determines mRNA length and regulates isoform expression. Cell 150, 53–64 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kaida, D. et al. U1 snRNP protects pre-mRNAs from premature cleavage and polyadenylation. Nature 468, 664–668 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Vorlová, S. et al. Induction of antagonistic soluble decoy receptor tyrosine kinases by intronic polyA activation. Mol. Cell 43, 927–939 (2011).

    PubMed  PubMed Central  Google Scholar 

  6. Almada, A.E., Wu, X., Kriz, A.J., Burge, C.B. & Sharp, P.A. Promoter directionality is controlled by U1 snRNP and polyadenylation signals. Nature 499, 360–363 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ntini, E. et al. Polyadenylation site-induced decay of upstream transcripts enforces promoter directionality. Nat. Struct. Mol. Biol. 20, 923–928 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Baserga, S.J. & Steitz, J.A. The diverse world of small ribonucleoproteins. Cold Spring Harb. Monograph Arch. 24, 359–381 (1993).

    Google Scholar 

  9. Battle, D.J. et al. The SMN complex: an assembly machine for RNPs. Cold Spring Harb. Symp. Quant. Biol. 71, 313–320 (2006).

    CAS  PubMed  Google Scholar 

  10. Guthrie, C. & Patterson, B. Spliceosomal snRNAs. Annu. Rev. Genet. 22, 387–419 (1988).

    CAS  PubMed  Google Scholar 

  11. Yong, J., Golembe, T.J., Battle, D.J., Pellizzoni, L. & Dreyfuss, G. snRNAs contain specific SMN-binding domains that are essential for snRNP assembly. Mol. Cell. Biol. 24, 2747–2756 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kondo, Y., Oubridge, C., van Roon, A.M. & Nagai, K. Crystal structure of human U1 snRNP, a small nuclear ribonucleoprotein particle, reveals the mechanism of 5′ splice site recognition. eLife 4, e04986 (2015).

    PubMed Central  Google Scholar 

  13. Leung, A.K., Nagai, K. & Li, J. Structure of the spliceosomal U4 snRNP core domain and its implication for snRNP biogenesis. Nature 473, 536–539 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Pomeranz Krummel, D.A., Oubridge, C., Leung, A.K., Li, J. & Nagai, K. Crystal structure of human spliceosomal U1 snRNP at 5.5 Å resolution. Nature 458, 475–480 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Raker, V.A., Hartmuth, K., Kastner, B. & Lührmann, R. Spliceosomal U snRNP core assembly: Sm proteins assemble onto an Sm site RNA nonanucleotide in a specific and thermodynamically stable manner. Mol. Cell. Biol. 19, 6554–6565 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Urlaub, H., Raker, V.A., Kostka, S. & Lührmann, R. Sm protein-Sm site RNA interactions within the inner ring of the spliceosomal snRNP core structure. EMBO J. 20, 187–196 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Weber, G., Trowitzsch, S., Kastner, B., Lührmann, R. & Wahl, M.C. Functional organization of the Sm core in the crystal structure of human U1 snRNP. EMBO J. 29, 4172–4184 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Battle, D.J. et al. The Gemin5 protein of the SMN complex identifies snRNAs. Mol. Cell 23, 273–279 (2006).

    CAS  PubMed  Google Scholar 

  19. Lau, C.K., Bachorik, J.L. & Dreyfuss, G. Gemin5-snRNA interaction reveals an RNA binding function for WD repeat domains. Nat. Struct. Mol. Biol. 16, 486–491 (2009).

    CAS  PubMed  Google Scholar 

  20. Yong, J., Kasim, M., Bachorik, J.L., Wan, L. & Dreyfuss, G. Gemin5 delivers snRNA precursors to the SMN complex for snRNP biogenesis. Mol. Cell 38, 551–562 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Cauchi, R.J. SMN and Gemins: 'we are family' … or are we?: insights into the partnership between Gemins and the spinal muscular atrophy disease protein SMN. BioEssays 32, 1077–1089 (2010).

    CAS  PubMed  Google Scholar 

  22. Fischer, U., Englbrecht, C. & Chari, A. Biogenesis of spliceosomal small nuclear ribonucleoproteins. Wiley Interdiscip. Rev. RNA 2, 718–731 (2011).

    CAS  PubMed  Google Scholar 

  23. Chari, A. et al. An assembly chaperone collaborates with the SMN complex to generate spliceosomal SnRNPs. Cell 135, 497–509 (2008).

    CAS  PubMed  Google Scholar 

  24. Grimm, C. et al. Structural basis of assembly chaperone-mediated snRNP formation. Mol. Cell 49, 692–703 (2013).

    CAS  PubMed  Google Scholar 

  25. Zhang, R. et al. Structure of a key intermediate of the SMN complex reveals Gemin2's crucial function in snRNP assembly. Cell 146, 384–395 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Will, C.L. & Lührmann, R. Spliceosomal UsnRNP biogenesis, structure and function. Curr. Opin. Cell Biol. 13, 290–301 (2001).

    CAS  PubMed  Google Scholar 

  27. Matera, A.G. & Wang, Z. A day in the life of the spliceosome. Nat. Rev. Mol. Cell Biol. 15, 108–121 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hamm, J., Dathan, N.A., Scherly, D. & Mattaj, I.W. Multiple domains of U1 snRNA, including U1 specific protein binding sites, are required for splicing. EMBO J. 9, 1237–1244 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Nelissen, R.L., Will, C.L., van Venrooij, W.J. & Lührmann, R. The association of the U1-specific 70K and C proteins with U1 snRNPs is mediated in part by common U snRNP proteins. EMBO J. 13, 4113–4125 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Yong, J., Pellizzoni, L. & Dreyfuss, G. Sequence-specific interaction of U1 snRNA with the SMN complex. EMBO J. 21, 1188–1196 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wan, L., Ottinger, E., Cho, S. & Dreyfuss, G. Inactivation of the SMN complex by oxidative stress. Mol. Cell 31, 244–254 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Wan, L. et al. The survival of motor neurons protein determines the capacity for snRNP assembly: biochemical deficiency in spinal muscular atrophy. Mol. Cell. Biol. 25, 5543–5551 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Younis, I. et al. Minor introns are embedded molecular switches regulated by highly unstable U6ata U6atac snRNA. eLife 2, e00780 (2013).

    PubMed  PubMed Central  Google Scholar 

  34. Kohtz, J.D. et al. Protein-protein interactions and 5′-splice-site recognition in mammalian mRNA precursors. Nature 368, 119–124 (1994).

    CAS  PubMed  Google Scholar 

  35. Cléry, A., Blatter, M. & Allain, F.H. RNA recognition motifs: boring? Not quite. Curr. Opin. Struct. Biol. 18, 290–298 (2008).

    PubMed  Google Scholar 

  36. Cho, S. et al. Interaction between the RNA binding domains of Ser-Arg splicing factor 1 and U1-70K snRNP protein determines early spliceosome assembly. Proc. Natl. Acad. Sci. USA 108, 8233–8238 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Burghes, A.H. & Beattie, C.E. Spinal muscular atrophy: why do low levels of survival motor neuron protein make motor neurons sick? Nat. Rev. Neurosci. 10, 597–609 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Lorson, C.L. et al. SMN oligomerization defect correlates with spinal muscular atrophy severity. Nat. Genet. 19, 63–66 (1998).

    CAS  PubMed  Google Scholar 

  39. Pellizzoni, L., Yong, J. & Dreyfuss, G. Essential role for the SMN complex in the specificity of snRNP assembly. Science 298, 1775–1779 (2002).

    CAS  PubMed  Google Scholar 

  40. Young, P.J. et al. The exon 2b region of the spinal muscular atrophy protein, SMN, is involved in self-association and SIP1 binding. Hum. Mol. Genet. 9, 2869–2877 (2000).

    CAS  PubMed  Google Scholar 

  41. Bedford, M.T. & Clarke, S.G. Protein arginine methylation in mammals: who, what, and why. Mol. Cell 33, 1–13 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Tripsianes, K. et al. Structural basis for dimethylarginine recognition by the Tudor domains of human SMN and SPF30 proteins. Nat. Struct. Mol. Biol. 18, 1414–1420 (2011).

    CAS  PubMed  Google Scholar 

  43. Liu, K. et al. Crystal structure of TDRD3 and methyl-arginine binding characterization of TDRD3, SMN and SPF30. PLoS One 7, e30375 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Yong, J., Wan, L. & Dreyfuss, G. Why do cells need an assembly machine for RNA-protein complexes? Trends Cell Biol. 14, 226–232 (2004).

    CAS  PubMed  Google Scholar 

  45. Ling, S.C., Polymenidou, M. & Cleveland, D.W. Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 79, 416–438 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Piazzon, N. et al. Implication of the SMN complex in the biogenesis and steady state level of the signal recognition particle. Nucleic Acids Res. 41, 1255–1272 (2013).

    CAS  PubMed  Google Scholar 

  47. Cheng, D., Côté, J., Shaaban, S. & Bedford, M.T. The arginine methyltransferase CARM1 regulates the coupling of transcription and mRNA processing. Mol. Cell 25, 71–83 (2007).

    PubMed  Google Scholar 

  48. Lorson, C.L. & Androphy, E.J. The domain encoded by exon 2 of the survival motor neuron protein mediates nucleic acid binding. Hum. Mol. Genet. 7, 1269–1275 (1998).

    CAS  PubMed  Google Scholar 

  49. O'Reilly, D. et al. Differentially expressed, variant U1 snRNAs regulate gene expression in human cells. Genome Res. 23, 281–291 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Shukla, S. & Parker, R. Quality control of assembly-defective U1 snRNAs by decapping and 5′-to-3′ exonucleolytic digestion. Proc. Natl. Acad. Sci. USA 111, E3277–E3286 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Gabanella, F. et al. Ribonucleoprotein assembly defects correlate with spinal muscular atrophy severity and preferentially affect a subset of spliceosomal snRNPs. PLoS One 2, e921 (2007).

    PubMed  PubMed Central  Google Scholar 

  52. Li, D.K., Tisdale, S., Lotti, F. & Pellizzoni, L. SMN control of RNP assembly: from post-transcriptional gene regulation to motor neuron disease. Semin. Cell Dev. Biol. 32, 22–29 (2014).

    CAS  PubMed  Google Scholar 

  53. Tisdale, S. et al. SMN is essential for the biogenesis of U7 small nuclear ribonucleoprotein and 3′-end formation of histone mRNAs. Cell Reports 5, 1187–1195 (2013).

    CAS  PubMed  Google Scholar 

  54. Zhang, Z. et al. SMN deficiency causes tissue-specific perturbations in the repertoire of snRNAs and widespread defects in splicing. Cell 133, 585–600 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang, Z. et al. Dysregulation of synaptogenesis genes antecedes motor neuron pathology in spinal muscular atrophy. Proc. Natl. Acad. Sci. USA 110, 19348–19353 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Sun, S. et al. ALS-causative mutations in FUS/TLS confer gain and loss of function by altered association with SMN and U1-snRNP. Nat. Commun. 6, 6171 (2015).

    CAS  PubMed  Google Scholar 

  57. Tsuiji, H. et al. Spliceosome integrity is defective in the motor neuron diseases ALS and SMA. EMBO Mol. Med. 5, 221–234 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Yamazaki, T. et al. FUS-SMN protein interactions link the motor neuron diseases ALS and SMA. Cell Reports 2, 799–806 (2012).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of our laboratory for helpful discussions and comments on the manuscript. This work was supported by the Association Française Contre les Myopathies (AFM) and by the US National Institutes of Health (R01 GM112923 to G.D.) G.D. is supported as an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

B.R.S., L.W. and Z.Z. designed and performed experiments. B.R.S., L.W., Z.Z., P.L., E.B., J.D. and I.Y. contributed to data analysis. G.D. is responsible for the project's planning and experimental design. All authors contributed to writing the paper.

Corresponding author

Correspondence to Gideon Dreyfuss.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Western blot analysis of the Gemin2-knockdown cell extracts used for in vitro Sm-core assembly.

Input cytoplasmic extracts from HeLa cells, transfected with control siRNA and siRNA targeting against Gemin2, are shown. Percent of residual Gemin2 protein after knockdown compared to control (100%) is indicated.

Supplementary Figure 2 Western blot analysis of the U1-70K-, SMN- or Gemin5-knockdown cell extracts used for snRNP-level measurements.

The SMN complex, U1-70K and Sm proteins in control, U1-70K, SMN or Gemin5 knockdown HeLa cells are shown. FXR1 was used as a loading control. Residual knockdown proteins for each knockdown compared to control (100%) are indicated.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2 (PDF 8152 kb)

Supplementary Data Set 1

Uncropped blots and gels with size marker indications (PDF 8111 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

So, B., Wan, L., Zhang, Z. et al. A U1 snRNP–specific assembly pathway reveals the SMN complex as a versatile hub for RNP exchange. Nat Struct Mol Biol 23, 225–230 (2016). https://doi.org/10.1038/nsmb.3167

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3167

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing