Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of adenovirus E3-19K bound to HLA-A2 reveals mechanism for immunomodulation

Abstract

E3-19K binds to and retains MHC class I molecules in the endoplasmic reticulum, suppressing anti-adenovirus activities of T cells. We determined the structure of the adenovirus serotype 2 (Ad2, species C) E3-19K–HLA-A2 complex to 1.95-Å resolution. Ad2 E3-19K binds to the N terminus of the HLA-A2 groove, contacting the α1, α2 and α3 domains and β2m. Ad2 E3-19K has a unique structure comprising a large N-terminal domain, formed by two partially overlapping β-sheets arranged in a V shape, and a C-terminal α-helix and tail. The structure reveals determinants in E3-19K and HLA-A2 that are important for complex formation; conservation of some of these determinants in E3-19K proteins of different species and MHC I molecules of different loci suggests a universal binding mode for all E3-19K proteins. Our structure is important for understanding the immunomodulatory function of E3-19K.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The structure of Ad2 E3-19K–HLA-A2.
Figure 2: Interaction surface between Ad2 E3-19K and HLA-A2.
Figure 3: Electrostatic properties of interacting surfaces in Ad2 E3-19K and HLA-A2.
Figure 4: Conserved residues in Ad2 E3-19K.
Figure 5: Amino acid sequence alignment at the four interaction sites.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Berk, A.J. Adenoviruses. in Fields Virology 5th edn. (eds. Knipe, D.M., Howley, P.M., Griffin, D.E. & Lamb, R.A.) 2395–2436 (Lippincott Williams & Wilkins, 2007).

  2. Wold, W.S.M. & Horwitz, M.S. Adenoviridae: the viruses and their replication. in Fields Virology, 5th edn. (eds. Knipe, D.M., Howley, P.M., Griffin, D.E. & Lamb, R.A.) 2355–2394 (Lippincott Williams & Wilkins, 2007).

  3. Hansen, T.H. & Bouvier, M. MHC class I antigen presentation: learning from viral evasion strategies. Nat. Rev. Immunol. 9, 503–513 (2009).

    Article  CAS  Google Scholar 

  4. Burgert, H.-G. et al. Subversion of host defense mechanisms by adenoviruses. in Viral Proteins Counteracting Host Defenses (eds. Koszinowski, U.H. & Hengel, H.) 273–318 (Springer, 2002).

  5. Andersson, M., Paabo, S., Nilsson, T. & Peterson, P.A. Impaired intracellular transport of class I MHC antigens as a possible means for adenoviruses to evade immune surveillance. Cell 43, 215–222 (1985).

    Article  CAS  Google Scholar 

  6. Andersson, M., McMichael, A. & Peterson, P.A. Reduced allorecognition of adenovirus-2 infected cells. J. Immunol. 138, 3960–3966 (1987).

    CAS  PubMed  Google Scholar 

  7. Burgert, H.G. & Kvist, S. An adenovirus type 2 glycoprotein blocks cell surface expression of human histocompatibility class I antigens. Cell 41, 987–997 (1985).

    Article  CAS  Google Scholar 

  8. Burgert, H.-G. & Kvist, S. The E3/19K protein of adenovirus type 2 binds to the domains of histocompatibility antigens required for CTL recognition. EMBO J. 6, 2019–2026 (1987).

    Article  CAS  Google Scholar 

  9. Flomenberg, P., Piaskowski, V., Truitt, R.L. & Casper, J.T. Human adenovirus-specific CD8+ T-cell responses are not inhibited by E3–19K in the presence of gamma interferon. J. Virol. 70, 6314–6322 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Rawle, F.C., Tollefson, A.E., Wold, W.S.M. & Gooding, L.R. Mouse anti-adenovirus cytoxic T lymphocytes. J. Immunol. 143, 2031–2037 (1989).

    CAS  PubMed  Google Scholar 

  11. Ginsberg, H.S. et al. Role of early region 3 (E3) in pathogenesis of Adenovirus disease. Proc. Natl. Acad. Sci. USA 86, 3823–3827 (1989).

    Article  CAS  Google Scholar 

  12. Wold, W.S.M. & Gooding, L.R. Adenovirus regions E3 proteins that prevent cytolysis by cytotoxic T cells and tumor necrosis factor. Mol. Biol. Med. 6, 433–452 (1989).

    CAS  PubMed  Google Scholar 

  13. Feuerbach, D. et al. Identification of amino acids within the MHC molecule important for the interaction with the adenovirus protein E3/19K. J. Immunol. 153, 1626–1636 (1994).

    CAS  PubMed  Google Scholar 

  14. Flomenberg, P., Gutierrez, E. & Hogan, K.T. Identification of class I MHC regions which bind to the adenovirus E3–19K protein. Mol. Immunol. 31, 1277–1284 (1994).

    Article  CAS  Google Scholar 

  15. Gabathuler, R., Levy, F. & Kvist, S. Requirement for the association of adenovirus type 2 E3–19K wild-type and mutant proteins with HLA antigens. J. Virol. 64, 3679–3685 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hermiston, T.W., Tripp, R.A., Sparer, R.A., Gooding, L.R. & Wold, W.S.M. Deletion mutation analysis of the adenovirus type 2 E3-gp19K protein: identification of sequences within the endoplasmic reticulum lumenal domain that are required for class I antigen binding and protection from adenovirus-specific cytotoxic T lymphocytes. J. Virol. 67, 5289–5298 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Cox, J.H., Bennink, J.R. & Yewdell, J.W. Retention of adenovirus E19 glycoprotein in the endoplasmic reticulum is essential to its ability to block antigen presentation. J. Exp. Med. 174, 1629–1637 (1991).

    Article  CAS  Google Scholar 

  18. Pääbo, S., Bhat, B.M., Wold, W.S.M. & Peterson, P.A. A short sequence in the COOH-terminus makes an adenovirus membrane glycoprotein a resident of the endoplasmic reticulum. Cell 50, 311–317 (1987).

    Article  Google Scholar 

  19. Severinsson, L., Martens, I. & Peterson, P.A. Differential association between two human MHC class I antigens and an adenoviral glycoprotein. J. Immunol. 137, 1003–1009 (1986).

    CAS  PubMed  Google Scholar 

  20. Deryckere, F. & Burgert, H.-G. Early region 3 of adenovirus type 19 (subgroup D) encodes an HLA-binding protein distinct from that of subgroups B and C. J. Virol. 70, 2832–2841 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Körner, H. & Burgert, H.-G. Down-regulation of HLA antigens by the adenovirus type 2 E3/19K protein in a T-lymphoma cell line. J. Virol. 68, 1442–1448 (1994).

    PubMed  PubMed Central  Google Scholar 

  22. Liu, H., Fu, J. & Bouvier, M. Allele- and locus-specific recognition of class I MHC molecules by the immunomodulatory E3–19K protein from adenovirus. J. Immunol. 178, 4567–4575 (2007).

    Article  CAS  Google Scholar 

  23. Fu, J., Li, L. & Bouvier, M. Adenovirus E3–19K proteins of different serotypes and subgroups have similar, yet distinct, immunomodulatory functions towards major histocompatibility class I molecules. J. Biol. Chem. 286, 17631–17639 (2011).

    Article  CAS  Google Scholar 

  24. Hermiston, T.W., Tripp, R.A., Sparer, R.A., Gooding, L.R. & Wold, W.S.M. Deletion mutation analysis of the adenovirus type 2 E3-gp19K protein: identification of sequences within the endoplasmic reticulum lumenal domain that are required for class I antigen binding and protection from adenovirus-specific cytotoxic T lymphocytes. J. Virol. 67, 5289–5298 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Flomenberg, P., Szmulewicz, J., Gutierrez, E. & Lupatkin, H. Role of the adenovirus E3–19K conserved region in binding major histocompatibility complex class I molecules. J. Virol. 66, 4778–4783 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Chatterjee, D. & Maizel, J.V. Homology of adenoviral E3 glycoprotein with HLA-DR heavy chain. Proc. Natl. Acad. Sci. USA 81, 6039–6043 (1984).

    Article  CAS  Google Scholar 

  27. Sester, M. et al. Conserved amino acids within the adenovirus 2 E3/19K protein differentially affect downregulation of MHC class I and MICA/B proteins. J. Immunol. 184, 255–267 (2010).

    Article  CAS  Google Scholar 

  28. Menz, B., Sester, M., Koebernick, K., Schmid, R. & Burgert, H.-G. Structural analysis of the adenovirus type 2 E3-/19K protein using mutagenesis and a panel of conformation-sensitive monoclonal antibodies. Mol. Immunol. 46, 16–26 (2008).

    Article  CAS  Google Scholar 

  29. Fu, J. & Bouvier, M. Determinants of the endoplasmic reticulum (ER) lumenal-domain of the Adenovirus serotype 2 E3–19K protein for association with and ER-retention of major histocompatibility complex class I molecules. Mol. Immunol. 48, 532–538 (2011).

    Article  CAS  Google Scholar 

  30. Wold, W.S.M., Cladaras, C., Deutscher, S.L. & Kapoor, Q.S. The 19-kDa glycoprotein coded by region E3 of adenovirus. Purification, characterization, and structural analysis. J. Biol. Chem. 260, 2424–2431 (1985).

    CAS  PubMed  Google Scholar 

  31. Liu, H., Stafford, W.F. & Bouvier, M. The endoplasmic reticulum lumenal domain of the adenovirus type 2 E3–19K binds to peptide-filled and peptide-deficient HLA-A*1101 molecules. J. Virol. 79, 13317–13325 (2005).

    Article  CAS  Google Scholar 

  32. Sester, M. & Burgert, H.-G. Conserved cysteine residues within the E3/19K protein of adenovirus type 2 are essential for binding to major histocompatibility complex antigens. J. Virol. 68, 5423–5432 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Holm, L. & Sander, C. Touring protein fold space with Dali/FSSP. Nucleic Acids Res. 26, 316–319 (1998).

  34. Krissinel, E. & Henrick, K. Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three-dimension. Acta Crystallogr. D Biol. Crystallogr. 60, 2256–2268 (2004).

    Article  CAS  Google Scholar 

  35. Lawrence, M.C. & Colman, P.M. Shape complementarity at protein/protein interfaces. J. Mol. Biol. 234, 946–950 (1993).

    Article  CAS  Google Scholar 

  36. Bouvier, M. Accessory proteins and the assembly of human class I MHC molecules. A molecular and structural perspective. Mol. Immunol. 39, 697–706 (2003).

    Article  CAS  Google Scholar 

  37. Yu, Y.Y.L. et al. Definition and transfer of a serological epitope specific for peptide-empty forms of MHC class I. Int. Immunol. 11, 1897–1906 (1999).

    Article  CAS  Google Scholar 

  38. Morris, C.R. et al. The amyloid precursor-like protein 2 and the adenoviral E3/19K protein both bind to a conformational site on H-2Kd and regulate H-2Kd expression. J. Biol. Chem. 278, 12618–12623 (2003).

    Article  CAS  Google Scholar 

  39. Mage, M.G. et al. The peptide-receptive transition state of MHC class I molecules: insight from structure and molecular dynamics. J. Immunol. 189, 1391–1399 (2012).

    Article  CAS  Google Scholar 

  40. Gewurz, B.E., Wang, E.W., Tortorella, D., Schust, D.J. & Ploegh, H.L. Human cytomegalovirus US2 endoplasmic reticulum-lumenal domain dictates association with major histocompatibility complex class I in a locus-specific manner. J. Virol. 75, 5197–5204 (2001).

    Article  CAS  Google Scholar 

  41. Ishido, S., Wang, C., Lee, B.-S., Cohen, G.B. & Jung, J.U. Downregulation of major histocompatibility complex class I molecules by Kaposi's sarcoma-associated herpesvirus K3 and K5 proteins. J. Virol. 74, 5300–5309 (2000).

    Article  CAS  Google Scholar 

  42. Cohen, G.B. et al. The selective downregulation of class I major histocompatibility complex proteins by HIV-1 protects HIV-infected cells from NK cells. Immunity 10, 661–671 (1999).

    Article  CAS  Google Scholar 

  43. McSharry, B.P. et al. Adenovirus E3/19K promotes evasion of NK cell recognition by intracellular sequestration of the NKG2D ligands major histocompatibility complex class I chain-related proteins A and B. J. Virol. 82, 4585–4594 (2008).

    Article  CAS  Google Scholar 

  44. Gewurz, B.E. et al. Antigen presentation subverted: structure of the human cytomegalovirus protein US2 bound to the class I molecule HLA-A2. Proc. Natl. Acad. Sci. USA 98, 6794–6799 (2001).

    Article  CAS  Google Scholar 

  45. Guex, N. & Peitsch, M.C. SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis 18, 2714–2723 (1997).

    Article  CAS  Google Scholar 

  46. Garboczi, D.N., Hung, D.T. & Wiley, D.C. HLA-A2-peptide complexes: refolding and crystallization of molecules expressed in Escherichia coli and complexed with single antigenic peptides. Proc. Natl. Acad. Sci. USA 89, 3429–3433 (1992).

    Article  CAS  Google Scholar 

  47. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  48. Navaza, J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  49. Cowtan, K.D. & Main, P. Improvement of macromolecular electron-density maps by the simultaneous application of real and reciprocal space constraints. Acta Crystallogr. D Biol. Crystallogr. 49, 148–157 (1993).

    Article  CAS  Google Scholar 

  50. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  51. Brünger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  Google Scholar 

  52. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported, in whole or in part, by the US National Institute of Allergy and Infectious Diseases grants R01 AI045070 and R56 AI102468 (to M.B.). We thank B. Santarsiero for help with X-ray data collection. Technical support by L. Qian for cell culture and protein purification is also acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

L.L., crystallographic and biochemical studies and manuscript preparation; Y.M., biochemical studies; M.B., project supervisor and manuscript preparation and principal manuscript author.

Corresponding author

Correspondence to Marlene Bouvier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1 (PDF 4398 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Muzahim, Y. & Bouvier, M. Crystal structure of adenovirus E3-19K bound to HLA-A2 reveals mechanism for immunomodulation. Nat Struct Mol Biol 19, 1176–1181 (2012). https://doi.org/10.1038/nsmb.2396

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2396

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing